Skip to main content

Building Blocks for Bottom-Up Neural Tissue Engineering: Tools for In Vitro Assembly and Interrogation of Neural Circuits

  • Chapter
  • First Online:
Neural Engineering

Abstract

Bottom-up tissue engineering approaches provide unique opportunities to investigate the formation and dynamics of neural circuits. Given the fact that spatial organization of cells with specific morphological, electrophysiological, and biochemical properties is a defining feature of neural circuits, bottom-up strategies are a promising tool in gaining mechanistic understanding of the role of spatial organization of cell types. Moreover, by controlling the cell density and matrix composition, structures assembled in vitro can have significantly lower light scattering, allowing high-resolution, high-speed optical imaging not possible in intact tissues. These features of bottom-up assembly approaches make them an attractive model system for probing molecular function in disease models, and also potentially in identifying the origin of emergent properties in neural circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerboom, J., et al. 2013. Genetically Encoded Calcium Indicators for Multi-color Neural Activity Imaging and Combination with Optogenetics. Frontiers in Molecular Neuroscience 6: 2.

    Article  Google Scholar 

  • Arosio, D., et al. 2010. Simultaneous Intracellular Chloride and pH Measurements Using a GFP-Based Sensor. Nature Methods 7(7): 516–518.

    Article  Google Scholar 

  • Berndt, A., et al. 2014. Structure-Guided Transformation of Channelrhodopsin into a Light-Activated Chloride Channel. Science 344(6182): 420–424.

    Article  Google Scholar 

  • Bowden, N., et al. 1997. Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays. Science 276(5310): 233–235.

    Article  Google Scholar 

  • Bowden, N., et al. 1999. Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the “Capillary Bond”. Journal of the American Chemical Society 121(23): 5373–5391.

    Article  Google Scholar 

  • Boyden, E.S., 2011. A History of Optogenetics: The Development of Tools for Controlling Brain Circuits with Light. F1000 Biol Rep 3: 11.

    Google Scholar 

  • Boyden, E.S., et al. 2005. Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity. Nature Neuroscience 8(9): 1263–1268.

    Article  Google Scholar 

  • Brannvall, K., et al. 2007. Enhanced Neuronal Differentiation in a Three-Dimensional Collagen-Hyaluronan Matrix. Journal of Neuroscience Research 85(10): 2138–2146.

    Article  Google Scholar 

  • Chang, R., J. Nam, and W. Sun. 2008. Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival from Solid Freeform Fabrication-Based Direct Cell Writing. Tissue Engineering. Part A 14(1): 41–48.

    Article  Google Scholar 

  • Chang, C.C., et al. 2011. Direct-Write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials 98(1): 160–170.

    Article  Google Scholar 

  • Chen, P., et al. 2008. Microfluidic Chips for Cell Sorting. Frontiers in Bioscience 13: 2464–2483.

    Article  Google Scholar 

  • Chen, T.W., et al. 2013. Ultrasensitive Fluorescent Proteins for Imaging Neuronal Activity. Nature 499(7458): 295–300.

    Article  Google Scholar 

  • Chen, P., et al. 2014. Microscale Assembly Directed by Liquid-Based Template. Advanced Materials 26(34): 5936–5941.

    Article  Google Scholar 

  • Cho, Y.K. 2015. Genetically Encoded Tools: Bridging the Gap Between Neuronal Identity and Function. ACS Chemical Neuroscience 6(1): 14–15.

    Article  Google Scholar 

  • Chow, B.Y., et al. 2010. High-Performance Genetically Targetable Optical Neural Silencing by Light-Driven Proton Pumps. Nature 463(7277): 98–102.

    Article  Google Scholar 

  • Chrisey, D.B. 2000. Materials Processing: The Power of Direct Writing. Science 289(5481): 879–881.

    Article  Google Scholar 

  • Chung, S.E., X. Dong, and M. Sitti. 2015. Three-Dimensional Heterogeneous Assembly of Coded Microgels Using an Untethered Mobile Microgripper. Lab on a Chip 15(7): 1667–1676.

    Article  Google Scholar 

  • Chuong, A.S., et al. 2014. Noninvasive Optical Inhibition with a Red-Shifted Microbial Rhodopsin. Nature Neuroscience 17(8): 1123–1129.

    Article  Google Scholar 

  • Cohen, D.L., et al. 2006. Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries. Tissue Engineering 12(5): 1325–1335.

    Article  Google Scholar 

  • Cui, X., et al. 2012. Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology. Tissue Engineering. Part A 18(11–12): 1304–1312.

    Article  Google Scholar 

  • De Coppi, P., et al. 2007. Isolation of Amniotic Stem Cell Lines with Potential for Therapy. Nature Biotechnology 25(1): 100–106.

    Article  Google Scholar 

  • Demirors, A.F., et al. 2013. Colloidal Assembly Directed by Virtual Magnetic Moulds. Nature 503(7474): 99–103.

    Article  Google Scholar 

  • Du, Y., et al. 2008a. Directed Assembly of Cell-Laden Microgels for Fabrication of 3D Tissue Constructs. Proceedings of the National Academy of Sciences of the United States of America 105(28): 9522–9527.

    Article  Google Scholar 

  • Du, Y., et al. 2008b. Method of Bottom-Up Directed Assembly of Cell-Laden Microgels. Cellular and Molecular Bioengineering 1(2–3): 157–162.

    Article  Google Scholar 

  • Duan, B., et al. 2013. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels. Journal of Biomedical Materials Research. Part A 101(5): 1255–1264.

    Article  Google Scholar 

  • Duocastella, M., et al. 2010. Novel Laser Printing Technique for Miniaturized Biosensors Preparation. Sensors and Actuators B: Chemical 145(1): 596–600.

    Article  Google Scholar 

  • Emiliani, V., et al. 2015. All-Optical Interrogation of Neural Circuits. Journal of Neuroscience 35(41): 13917–13926.

    Article  Google Scholar 

  • Eng, G., et al. 2013. Assembly of Complex Cell Microenvironments Using Geometrically Docked Hydrogel Shapes. Proceedings of the National Academy of Sciences 110(12): 4551–4556.

    Article  Google Scholar 

  • Fedorovich, N.E., et al. 2009. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications. Biomacromolecules 10(7): 1689–1696.

    Article  Google Scholar 

  • Forsby, A., et al. 2009. Neuronal In Vitro Models for the Estimation of Acute Systemic Toxicity. Toxicology In Vitro 23(8): 1564–1569.

    Article  Google Scholar 

  • Gandhi, S.P., and C.F. Stevens. 2003. Three Modes of Synaptic Vesicular Recycling Revealed by Single-Vesicle Imaging. Nature 423(6940): 607–613.

    Article  Google Scholar 

  • Gassmann, K., et al. 2012. Automated Neurosphere Sorting and Plating by the Copas Large Particle Sorter Is a Suitable Method for High-Throughput 3D in Vitro Applications. Toxicology In Vitro 26(6): 993–1000.

    Article  Google Scholar 

  • Grzybowski, B.A., H.A. Stone, and G.M. Whitesides. 2000. Dynamic Self-Assembly of Magnetized, Millimetre-Sized Objects Rotating at a Liquid-Air Interface. Nature 405(6790): 1033–1036.

    Article  Google Scholar 

  • Grzybowski, B.A., et al. 2009. Self-Assembly: From Crystals to Cells. Soft Matter 5(6): 1110–1128.

    Article  MathSciNet  Google Scholar 

  • Guillotin, B., and F. Guillemot. 2011. Cell Patterning Technologies for Organotypic Tissue Fabrication. Trends in Biotechnology 29(4): 183–190.

    Article  Google Scholar 

  • Guillotin, B., et al. 2010. Laser Assisted Bioprinting of Engineered Tissue with High Cell Density and Microscale Organization. Biomaterials 31(28): 7250–7256.

    Article  Google Scholar 

  • Guo, F., et al. 2015. Controlling Cell–Cell Interactions Using Surface Acoustic Waves. Proceedings of the National Academy of Sciences 112(1): 43–48.

    Article  Google Scholar 

  • Gurkan, U.A., et al. 2012. Emerging Technologies for Assembly of Microscale Hydrogels. Advanced Healthcare Materials 1(2): 149–158.

    Article  Google Scholar 

  • Gurkan, U.A., et al. 2013. Simple Precision Creation of Digitally Specified, Spatially Heterogeneous. Engineered Tissue Architectures. Advanced Materials 25(8): 1192–1198.

    Google Scholar 

  • Guven, S., et al. 2015. Multiscale Assembly for Tissue Engineering and Regenerative Medicine. Trends in Biotechnology 33(5): 269–279.

    Article  MathSciNet  Google Scholar 

  • Han, X., and E.S. Boyden. 2007. Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, With Single-Spike Temporal Resolution. PLoS One 2(3): e299.

    Article  Google Scholar 

  • Harada, A., et al. 2011. Macroscopic Self-Assembly Through Molecular Recognition. Nature Chemistry 3(1): 34–37.

    Article  Google Scholar 

  • Hernandez, C.J., and T.G. Mason. 2007. Colloidal Alphabet Soup: Monodisperse Dispersions of Shape-Designed LithoParticles. The Journal of Physical Chemistry C 111(12): 4477–4480.

    Article  Google Scholar 

  • Hires, S.A., Y. Zhu, and R.Y. Tsien. 2008. Optical Measurement of Synaptic Glutamate Spillover and Reuptake by Linker Optimized Glutamate-Sensitive Fluorescent Reporters. Proceedings of the National Academy of Sciences of the United States of America 105(11): 4411–4416.

    Article  Google Scholar 

  • Hochbaum, D.R., et al. 2014. All-Optical Electrophysiology in Mammalian Neurons Using Engineered Microbial Rhodopsins. Nature Methods 11(8): 825–833.

    Article  Google Scholar 

  • Ivanova, E., and Z.H. Pan. 2009. Evaluation of the Adeno-Associated Virus Mediated Long-Term Expression of Channelrhodopsin-2 in the Mouse Retina. Molecular Vision 15: 1680–1689.

    Google Scholar 

  • Jakab, K., et al. 2006. Three-Dimensional Tissue Constructs Built by Bioprinting. Biorheology 43(3–4): 509–513.

    Google Scholar 

  • Jakab, K., et al. 2008. Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering. Part A 14(3): 413–421.

    Article  Google Scholar 

  • Jin, L., et al. 2012. Single Action Potentials and Subthreshold Electrical Events Imaged in Neurons with a Fluorescent Protein Voltage Probe. Neuron 75(5): 779–785.

    Article  Google Scholar 

  • Jones, N. 2012. Science in Three Dimensions: The Print Revolution. Nature 487(7405): 22–23.

    Article  Google Scholar 

  • Jurga, M., et al. 2009. Generation of Functional Neural Artificial Tissue from Human Umbilical Cord Blood Stem Cells. Tissue Engineering. Part C, Methods 15(3): 365–372.

    Article  Google Scholar 

  • Karoly, J., et al. 2010. Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells. Biofabrication 2(2): 022001.

    Article  Google Scholar 

  • Kattamis, N.T., et al. 2007. Thick Film Laser Induced Forward Transfer for Deposition of Thermally and Mechanically Sensitive Materials. Applied Physics Letters 91(17): 171120.

    Article  Google Scholar 

  • Keriquel, V., et al. 2010. In Vivo Bioprinting for Computer- and Robotic-Assisted Medical Intervention: Preliminary Study in Mice. Biofabrication 2(1): 014101.

    Article  Google Scholar 

  • Khademhosseini, A., and R. Langer. 2007. Microengineered Hydrogels for Tissue Engineering. Biomaterials 28(34): 5087–5092.

    Article  Google Scholar 

  • Khademhosseini, A., et al. 2006. Microscale Technologies for Tissue Engineering and Biology. Proceedings of the National Academy of Sciences of the United States of America 103(8): 2480–2487.

    Article  Google Scholar 

  • Khalil, S., and W. Sun. 2007. Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs. Materials Science and Engineering: C 27(3): 469–478.

    Article  Google Scholar 

  • Klapoetke, N.C., et al. 2014. Independent Optical Excitation of Distinct Neural Populations. Nature Methods 11(3): 338–346.

    Article  Google Scholar 

  • Klebe, R.J. 1988. Cytoscribing: A Method for Micropositioning Cells and the Construction of Two- and Three-Dimensional Synthetic Tissues. Experimental Cell Research 179(2): 362–373.

    Article  Google Scholar 

  • Knowlton, S., et al. 2015. Bioprinting for Cancer Research. Trends in Biotechnology 33(9): 504–513.

    Article  Google Scholar 

  • Knowlton, S., et al. 2016. Utilizing Stem Cells for Three-Dimensional Neural Tissue Engineering. Biomaterials Science, advance article DOI: 10.1039/C5BM00324E.

    Google Scholar 

  • Kralj, J.M., et al. 2012. Optical Recording of Action Potentials in Mammalian Neurons Using a Microbial Rhodopsin. Nature Methods 9(1): 90–95.

    Article  Google Scholar 

  • Kuner, T., and G.J. Augustine. 2000. A Genetically Encoded Ratiometric Indicator for Chloride: Capturing Chloride Transients In Cultured Hippocampal Neurons. Neuron 27(3): 447–459.

    Article  Google Scholar 

  • Li, C.Y., et al. 2011. DNA-Templated Assembly of Droplet-Derived PEG Microtissues. Lab on a Chip 11(17): 2967–2975.

    Article  Google Scholar 

  • Lo, L., and D.J. Anderson. 2011. A Cre-dependent, Anterograde Transsynaptic Viral Tracer for Mapping Output Pathways of Genetically Marked Neurons. Neuron 72(6): 938–950.

    Article  Google Scholar 

  • Madisen, L., et al. 2012. A Toolbox of Cre-dependent Optogenetic Transgenic Mice for Light-Induced Activation and Silencing. Nature Neuroscience 15(5): 793–802.

    Article  Google Scholar 

  • Madisen, L., et al. 2015. Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance. Neuron 85(5): 942–958.

    Article  Google Scholar 

  • Michael, S., et al. 2013. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PLoS One 8(3): e57741.

    Article  MathSciNet  Google Scholar 

  • Miesenbock, G., D.A. De Angelis, and J.E. Rothman. 1998. Visualizing Secretion and Synaptic Transmission with Ph-Sensitive Green Fluorescent Proteins. Nature 394(6689): 192–195.

    Article  Google Scholar 

  • Mirica, K.A., et al. 2011. Using Magnetic Levitation for Three Dimensional Self-Assembly. Advanced Materials 23(36): 4134–4140.

    Article  Google Scholar 

  • Miyawaki, A., et al. 1997. Fluorescent Indicators For Ca2+ Based on Green Fluorescent Proteins and Calmodulin. Nature 388(6645): 882–887.

    Article  Google Scholar 

  • Muller, W., and J.A. Connor. 1991. Dendritic Spines as Individual Neuronal Compartments for Synaptic Ca2+ Responses. Nature 354(6348): 73–76.

    Article  Google Scholar 

  • Muradoglu, M., and S. Tasoglu. 2010. A Front-Tracking Method for Computational Modeling of Impact and Spreading of Viscous Droplets on Solid Walls. Computers & Fluids 39(4): 615–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy, S.V., and A. Atala. 2014. 3D Bioprinting of Tissues and Organs. Nature Biotechnology 32(8): 773–785.

    Article  Google Scholar 

  • Nagel, G., et al. 2003. Channelrhodopsin-2, a Directly Light-Gated Cation-Selective Membrane Channel. Proceedings of the National Academy of Sciences of the United States of America 100(24): 13940–13945.

    Article  Google Scholar 

  • Nair, K., et al. 2009. Characterization of Cell Viability During Bioprinting Processes. Biotechnology Journal 4(8): 1168–1177.

    Article  Google Scholar 

  • Nakai, J., M. Ohkura, and K. Imoto. 2001. A High Signal-To-Noise Ca(2+) Probe Composed of a Single Green Fluorescent Protein. Nature Biotechnology 19(2): 137–141.

    Article  Google Scholar 

  • Nichol, J.W., and A. Khademhosseini. 2009. Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up. Soft Matter 5(7): 1312–1319.

    Article  Google Scholar 

  • Norotte, C., et al. 2009. Scaffold-Free Vascular Tissue Engineering Using Bioprinting. Biomaterials 30(30): 5910–5917.

    Article  Google Scholar 

  • O’Shaughnessy, T.J., H.J. Lin, and W. Ma. 2003. Functional Synapse Formation Among Rat Cortical Neurons Grown on Three-Dimensional Collagen Gels. Neuroscience Letters 340(3): 169–172.

    Article  Google Scholar 

  • Okumoto, S., et al. 2005. Detection of Glutamate Release from Neurons by Genetically Encoded Surface-Displayed Fret Nanosensors. Proceedings of the National Academy of Sciences of the United States of America 102(24): 8740–8745.

    Article  Google Scholar 

  • Osakada, F., et al. 2011. New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron 71(4): 617–631.

    Article  Google Scholar 

  • Peretz, H., et al. 2007. Superior Survival and Durability of Neurons and Astrocytes on 3-Dimensional Aragonite Biomatrices. Tissue Engineering 13(3): 461–472.

    Article  MathSciNet  Google Scholar 

  • Petreanu, L., et al. 2007. Channelrhodopsin-2-Assisted Circuit Mapping of Long-Range Callosal Projections. Nature Neuroscience 10(5): 663–668.

    Article  Google Scholar 

  • Radisic, M., et al. 2004. Functional Assembly of Engineered Myocardium by Electrical Stimulation of Cardiac Myocytes Cultured on Scaffolds. Proceedings of the National Academy of Sciences 101(52): 18129–18134.

    Article  Google Scholar 

  • Raimondo, J.V., et al. 2013. A Genetically-Encoded Chloride and pH Sensor for Dissociating Ion Dynamics in the Nervous System. Frontiers in Cellular Neuroscience 7: 202.

    Article  Google Scholar 

  • Ringeisen, B.R., et al. 2004. Laser Printing of Pluripotent Embryonal Carcinoma Cells. Tissue Engineering 10(3–4): 483–491.

    Article  Google Scholar 

  • Schmidt, D., and Y.K. Cho. 2015. Natural Photoreceptors and Their Application to Synthetic Biology. Trends in Biotechnology 33(2): 80–91.

    Article  Google Scholar 

  • Serra, M., et al. 2009. Integrating Human Stem Cell Expansion and Neuronal Differentiation in Bioreactors. BMC Biotechnology 9: 82.

    Article  Google Scholar 

  • Shi, J., et al. 2009. Acoustic Tweezers: Patterning Cells and Microparticles Using Standing Surface Acoustic Waves (SSAW). Lab on a Chip 9(20): 2890–2895.

    Article  Google Scholar 

  • Sitti, M., et al. 2015. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE 103(2): 205–224.

    Article  Google Scholar 

  • Skardal, A., et al. 2012. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds. Stem Cells Translational Medicine 1(11): 792–802.

    Article  Google Scholar 

  • Snezhko, A., and I.S. Aranson. 2011. Magnetic Manipulation of Self-Assembled Colloidal Asters. Nature Materials 10(9): 698–703.

    Article  Google Scholar 

  • St-Pierre, F., et al. 2014. High-Fidelity Optical Reporting of Neuronal Electrical Activity with an Ultrafast Fluorescent Voltage Sensor. Nature Neuroscience 17(6): 884–889.

    Article  MathSciNet  Google Scholar 

  • Tank, D.W., et al. 1988. Spatially Resolved Calcium Dynamics of Mammalian Purkinje Cells in Cerebellar Slice. Science 242(4879): 773–777.

    Article  Google Scholar 

  • Tasoglu, S., and U. Demirci. 2013. Bioprinting for Stem Cell Research. Trends in Biotechnology 31(1): 10–19.

    Article  Google Scholar 

  • Tasoglu, S., et al. 2010. Impact of a Compound Droplet on a Flat Surface: A Model for Single Cell Epitaxy. Physics of Fluids 22(8): 082103.

    Article  Google Scholar 

  • Tasoglu, S., et al. 2013a. Paramagnetic Levitational Assembly of Hydrogels. Advanced Materials 25(8): 1137–1143.

    Article  Google Scholar 

  • Tasoglu, S., et al. 2013b. Manipulating Biological Agents and Cells in Micro-Scale Volumes for Applications in Medicine. Chemical Society Reviews 42(13): 5788–5808.

    Article  Google Scholar 

  • Tasoglu, S., et al. 2014a. Guided and Magnetic Self-Assembly of Tunable Magnetoceptive Gels. Nature Communications 5, 4702.

    Article  Google Scholar 

  • Tasoglu, S., et al. 2014b. Untethered Micro-Robotic Coding of Three-Dimensional Material Composition. Nature Communications 5: 3124.

    Google Scholar 

  • Tasoglu, S., et al. 2015. Magnetic Levitational Assembly for Living Material Fabrication. Advanced Healthcare Materials 4(10): 1469–1476.

    Article  Google Scholar 

  • Tekin, E., P.J. Smith, and U.S. Schubert. 2008. Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles. Soft Matter 4(4): 703–713.

    Article  Google Scholar 

  • Tonnesen, J., et al. 2011. Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model. PLoS One 6(3): e17560.

    Article  Google Scholar 

  • van Vliet, E., et al. 2007. Electrophysiological Recording of Re-aggregating Brain Cell Cultures on Multi-Electrode Arrays to Detect Acute Neurotoxic Effects. Neurotoxicology 28(6): 1136–1146.

    Article  Google Scholar 

  • Vanherberghen, B., et al. 2010. Ultrasound-Controlled Cell Aggregation in a Multi-Well Chip. Lab on a Chip 10(20): 2727–2732.

    Article  Google Scholar 

  • Visser, J., et al. 2013. Biofabrication of Multi-material Anatomically Shaped Tissue Constructs. Biofabrication 5(3): 035007.

    Article  Google Scholar 

  • Wickersham, I.R., et al. 2007. Retrograde Neuronal Tracing with a Deletion-Mutant Rabies Virus. Nature Methods 4(1): 47–49.

    Article  Google Scholar 

  • Wietek, J., et al. 2014. Conversion of Channelrhodopsin into a Light-Gated Chloride Channel. Science 344(6182): 409–412.

    Article  Google Scholar 

  • Wolfe, D.B., et al. 2003. Mesoscale Self-Assembly: Capillary Interactions When Positive and Negative Menisci Have Similar Amplitudes. Langmuir 19(6): 2206–2214.

    Article  Google Scholar 

  • Wu, J., et al. 2013. Improved Orange and Red Ca(2)+/− Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chemical Neuroscience 4(6): 963–972.

    Article  Google Scholar 

  • Xu, T., et al. 2008a. High-Throughput Production of Single-Cell Microparticles Using an Inkjet Printing Technology. Journal of Manufacturing Science and Engineering 130(2): 021017.

    Article  Google Scholar 

  • Xu, T., et al. 2008b. Characterization of Cell Constructs Generated with Inkjet Printing Technology Using In Vivo Magnetic Resonance Imaging. Journal of Manufacturing Science and Engineering 130(2): 021013.

    Article  Google Scholar 

  • Xu, F., et al. 2011a. Three-Dimensional Magnetic Assembly of Microscale Hydrogels. Advanced Materials 23(37): 4254–4260.

    Article  Google Scholar 

  • Xu, F., et al. 2011b. A Three-Dimensional In Vitro Ovarian Cancer Coculture Model Using a High-Throughput Cell Patterning Platform. Biotechnology Journal 6(2): 204–212.

    Article  Google Scholar 

  • Zamanian, B., et al. 2010. Interface-Directed Self-Assembly of Cell-Laden Microgels. Small 6(8): 937–944.

    Article  Google Scholar 

  • Zhang, F., et al. 2007. Circuit-Breakers: Optical Technologies for Probing Neural Signals and Systems. Nature Reviews. Neuroscience 8(8): 577–581.

    Article  Google Scholar 

  • Zhao, Y., et al. 2011. An Expanded Palette of Genetically Encoded Ca(2)(+) Indicators. Science 333(6051): 1888–1891.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ku Cho or Savas Tasoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Knowlton, S., Li, D., Ersoy, F., Cho, Y.K., Tasoglu, S. (2016). Building Blocks for Bottom-Up Neural Tissue Engineering: Tools for In Vitro Assembly and Interrogation of Neural Circuits. In: Zhang, L., Kaplan, D. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31433-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31433-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31431-0

  • Online ISBN: 978-3-319-31433-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics