Skip to main content

Corals and Light: From Energy Source to Deadly Threat

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

The bathymetric distribution of reef-building, zooxanthellate corals is constrained by the attenuation of underwater light. The products of algal symbiont photosynthesis provide a major share of the energy, supporting the metabolic needs of the animal host. The two orders of magnitude in the underwater light field spanned by corals are overcome by photoacclimative responses of both the algae and the animal host. The corals decrease the photosynthetic fraction of their energy budget as light dims with depth, increasing their heterotrophic dependence on predation. In shallow water, corals are exposed to photodynamic dangers to which both host and symbiont are susceptible. These effects are mitigated by an array of antioxidative mechanisms that wax and wane in a diel periodicity to meet the concomitant fluctuation in oxygen evolution. The nocturnal tentacular extension seen in many corals is terminated at dawn by light, probably mediated by the photosynthesis of the zooxanthellae.

The Goreau paradigm of “light-enhanced calcification” is summarized while recently documented exceptions are discussed. The role of light as an information source, besides its acknowledged role as an energy source, is evident in the poorly understood role of lunar periodicity in triggering the spectacular mass-spawning episodes of pacific corals.

The characteristics of the underwater light field, its intensity and directionality, control the architecture of zooxanthellate coral colonies, favoring the optimization of the light exposure of the zooxanthellae.

This rejview summarizes the main gaps in our understanding of the interaction of corals and light, thereby suggesting promising future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allemand D, Tambutte E, Zoccola D, Tambutte S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science, New York, pp 119–150

    Chapter  Google Scholar 

  • Atoda K (1947) The larva and postlarval development of some reef-building corals. I. Pocillopora damicornis cespitosa (Dana). Sci Rep Tohoku Univ Ser 4(18):24–47

    Google Scholar 

  • Babcock RC, Mundy CN (1996) Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J Exp Mar Biol Ecol 206:179–201

    Article  Google Scholar 

  • Bachar A, Achituv Y, Pastemak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298

    Article  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689

    Article  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef building corals and algae. In: Dubinsky Z (ed) Coral reef ecosystems, ecosystems of the world, vol 25., pp 109–132

    Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Royal Soc Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Bernard HM (1902) The species problem in corals. Nature 65:560

    Article  Google Scholar 

  • Biel KY, Gates RD, Muscatine L (2007) EVects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoXagellates. Russ J Plant Physiol 54:171–183

    Article  CAS  Google Scholar 

  • Bigot L, Chabanet P, Charpy L, Conand C, Quod J-P, Tessier E (2000) CDROM: “Suivi des Récifs Coralliens” PRE-COI/UE

    Google Scholar 

  • Boch CA, Ananthasubramaniam B, Sweeney AM, Doyle FJ 3rd, Morse DE (2011) Effects of light dynamics on coral spawning synchrony. Biol Bull 220:161–173

    PubMed  Google Scholar 

  • Brady AK, Hilton JD, Vize PD (2009) Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28(3):677–680

    Article  Google Scholar 

  • Brandt K (1881) Über das Zusammenleben von Thieren und Algen. Verh Physiologischer Ges 1881–1882:22–26

    Google Scholar 

  • Chen CA, Yang YW, Wei NV, Tsai WS, Fang LS (2005) Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24: 11–22.

    Google Scholar 

  • Chindapol N, Kaandorp JA, Cronemberger C, Mass T, Genin A (2013) Modelling growth and form of the scleractinian coral pocillopora verrucosa and the influence of hydrodynamics. PLoS Comput Biol 9:e1002849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen I, Dishon G, Iluz D, Dubinsky Z (2013) UV-B as a photoacclimatory enhancer of the hermatypic coral Stylophora pistillata. Open J Mar Sci 3:15–27

    Article  Google Scholar 

  • Crossland CJ, Barnes DJ (1974) The role of metabolic nitrogen in coral calcification. Mar Biol 28:325–332

    Article  CAS  Google Scholar 

  • Droop MR (1963) Algae and invertebrates in symbiosis. In: Nutman PS, Mosse B (eds) Symbiotic associations, symposium society general microbiology, vol 13. Cambridge University Press, London, pp 171–199

    Google Scholar 

  • Dubinsky Z, Falkowski PG, Scharf D (1983) Aspects of adaptation of hermatypic corals and their endosymbiontic zooxanthellae to light. Bull Inst Oceanogr Fish 9:124–134

    Google Scholar 

  • Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light-and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc London B222:203–214

    Article  Google Scholar 

  • Dubinsky Z, Falkowski PG, Wyman K (1986) Light harvesting and utilization in phytoplankton. Plant Cell Physiol 27:1335–1350

    CAS  Google Scholar 

  • Eden NI, Bil FK, Titlyanov E, Dubinsky Z (1996) Photosynthetic capacity and composition of 14C fixation products in symbiotic zooxanthellae of Stylophora pistillata in vivo under different light and nutrient conditions. In: Steinberger Y (ed) Preservation of our world in the wake of change, vol 6A/B. ISEEQS Publication, Jerusalem, pp 462–463

    Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Article  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 151–176

    Chapter  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter J (1984) Light and the bioenergetics of a symbiotic coral. BioScience 34:705–709

    Article  CAS  Google Scholar 

  • Falkowski PG, McClosky L, Muscatine L, Dubinsky Z (1993) Population control in symbiotic corals. BioScience 43:606–611

    Article  Google Scholar 

  • Fang L-S, Chen Y-WJ, Chen C-S (1989) Why does the white tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363

    Article  Google Scholar 

  • Fisher T, Schurtz-Swirski R, Gepstein S, Dubinsky Z (1989) Changes in the levels of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in Tetraedron minimum (Chlorophyta) during light and shade adaptation. Plant Cell Physiol 30:221–228

    CAS  Google Scholar 

  • Fricke HW, Vareschi E, Schlichter D (1987) Photoecology of symbiotic coral Leptoseris fragilis in the Red Sea. Mar Ecol Prog Ser 1:145–152

    Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review of interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  CAS  Google Scholar 

  • Goffredo S, Caroselli E, Mezzo F et al (2012) The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea. Geochim Cosmochim Acta 85:187–199

    Article  CAS  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    Article  CAS  PubMed  Google Scholar 

  • Graus RR, MacIntyre IG (1976) Light control of growth form in colonial reef corals: computer simulation. Science 193:895–897

    Article  CAS  PubMed  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reef ecosystems, ecosystems of the world, vol 25. Elsevier Science Publishers, Amsterdam, pp 133–207. ISBN 0-444-87392-9

    Google Scholar 

  • Holcomb M, Tambutté E, Allemand D, Tambutté S (2014) Light enhanced calcification in: effects of glucose, glycerol and oxygen Stylophora pistillata. PeerJ 2:e375

    Google Scholar 

  • Iluz D, Dubinsky Z (2015) Coral photobiology: new light on old views. Zoology 118:71–78

    Article  PubMed  Google Scholar 

  • Iluz D, Yehoshua Y, Dubinsky Z (2008) The quantum yields of phytoplankton photosynthesis in the Gulf of Aqaba (Eilat), Northern Red Sea. Israel J Plant Sci 56:29–38

    Article  CAS  Google Scholar 

  • Jokiel PL (2011) The reef coral two compartment proton flux model: a new approach relating tissue-level physiological processes to gross corallum morphology. J Exp Mar Biol Ecol 409:1–12

    Article  CAS  Google Scholar 

  • Jokiel PL, Ito RY, Liu PM (1985) Night irradiance and synchronization of lunar spawning of larvae in the reef coral Pocillopora damicornis (Linnaeus). Mar Biol 88:167–174

    Article  Google Scholar 

  • Kawaguti S, Sakumoto D (1948) The effect of light on ti-me calcium deposition of corals. Bull Oceanogr Inst Taiwan 4:65–70

    Google Scholar 

  • Kuhl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Lampert-Karako S, Noga Stambler N, Katcof DJ, Achituv Y, Dubinsky Z, Simon-Blecher N (2008) Aquatic Conserv: Mar. Freshw. Ecosyst. Published online in Wiley InterScience (www.interscience.wiley.com). doi: 10.1002/aqc.927 Effects of depth and eutrophication on the zooxanthella clades of Stylophora pistillata from the Gulf of Eilat (Red Sea)

  • Levy O, Dubinsky Z, Achituv Y (2003) Photobehavior of stony corals: responses to light spectra and intensity. J Exp Biol 206:4041–4049

    Article  CAS  PubMed  Google Scholar 

  • Levy O, Dubinsky Z, Schneider K, Achituv Y, Zakai D, Gorbunov MY (2004) Diurnal hysteresis in coral photosynthesis. Mar Ecol Prog Ser 268:105–117

    Article  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46

    Article  CAS  Google Scholar 

  • Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller D, Hoegh-Guldbrg O (2007) Light-responsive cryptochromes from the simplest marine eumetazoan animals. Science 318:467–470

    Article  CAS  PubMed  Google Scholar 

  • Loya Y, Slobodkin LB (1971) The coral reefs of Eilat (Gulf of Eilat, Red Sea) Proc. Zool Soc London 28:117–140

    Google Scholar 

  • Malkin A, Dubinsky Z, Fomina I, Bil K (1996) Composition and translocation of symbiotic algae photosynthates at different nutritions in presence of host factor. In: Steinberger Y (ed) Preservation of our world in the wake of change, vol 6A/B. ISEEQS Publication, Jerusalem, pp 459–461

    Google Scholar 

  • Marcelino LA, Westneat MW, Stoyneva V, Henss J, Rogers JD et al (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8(4):e61492. doi:10.1371/journal.pone.0061492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    Article  CAS  Google Scholar 

  • McConnaughey T, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • McLaughlin JJA, Zahl PA (1959) Axenic zooxanthellae from various invertebrate hosts. Ann N Y Acad Sci 77:55–72

    Article  Google Scholar 

  • Meroz E, Brickner I, Loya Y, Peretzman-Shemer A, Ilan M (2002) The effect of gravity on coral morphology. Proc R Soc B: Biol Sci 269:717–720

    Article  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric Aganciid corals. J Exp Mar Biol Ecol 116:193–217

    Article  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:5, 16-5 19

    Article  Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition II. 15N of zooxanthellae and animal tissue versus depth. Pac Sci 48(3):304–312

    Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z (1983) Carbon budgets in symbiotic associations. Endocytobiology 2:649–658

    Google Scholar 

  • Muscatine L, Falkowski PG, Porter J, Dubinsky Z (1984) Fate of photosynthetically fixed carbon in light and shade-adapted corals. Proc R Soc London 222B:181–202

    Article  Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok atoll. Ecolog Monogr 25:291–320

    Article  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Quoy JR, Gaimard JP (1825) Mémoire sur l’accroissement des polypes lithophytes considéré géologiquement. Ann Sci Nat 6:373–390

    Google Scholar 

  • Rahav O, Dubinsky Z, Achituv Y, Falkowski PG (1989) Ammonium metabolism in the zooxanthellate coral: Stylophora pistillata. Proc Roy Soc London B236:325–337

    Article  Google Scholar 

  • Roth MS (2014) The engine of the reef: photobiology of the coral–algal symbiosis. Front Microbiol 5:422

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Shibata AK, Haxo FT (1969) Light transmission and spectral distribution through epiand endozoic algal layers in the brain coral Favia. BioI Bull (Woods Hole) 136:461–468

    Article  CAS  Google Scholar 

  • Shwartsberg M, Kizner Z, Dubinsky Z, Bachar A (2012) Morphological growth response of Stylophora pistillata to in-situ manipulations of light intensity and water flow regime. Israel J Ecol Evol 58:69–85

    Article  Google Scholar 

  • Simkiss K (1964) Possible effects of zooxanthellae on coral growth. Experientia 20:140

    Article  Google Scholar 

  • Stambler N (2011a) Marine microralgae/cyanobacteria -invertebrate symbiosis, trading energy for strategic material. In: Seckbach J, Dubinsky Z (eds) All flesh is grass: plant-animal interactions, Dordrecht, The Netherlands: Springer Science, vol 16, pp 383–414

    Google Scholar 

  • Stambler N (2011b) Zooxanthellae: the yellow symbionts inside animals. In: Dubinsky Z, Stambler N (eds) Coral reefs an ecosystem in transition. Dordrecht, The Netherlands: Springer Science, pp 87–106

    Google Scholar 

  • Stambler N, Dubinsky Z (2007) Phototrophs in the twilight zone. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments, vol 11, Cellular Origin, Life in Extreme Habitats and Astrobiology. Dordrecht, The Netherlands: Springer Science, pp 79–97

    Google Scholar 

  • Sweeney AM, Boch CA, Johnsen S, Morse DE (2011) Twilight spectral dynamics and the coral reef invertebrate spawning response. J Exp Biol 214:770–777

    Article  PubMed  Google Scholar 

  • Titlyanov E, Leletkin V, Dubinsky Z (2000) Autotrophy and predation in the hermatypic coral Stylophora pistillata in different light habitats. Symbiosis 29:263–281

    Google Scholar 

  • Trench RK (1987) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific, Oxford, pp 530–570

    Google Scholar 

  • van Woesik R (2010) Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc R Soc B 277:715–722. doi:10.1098/rspb.2009.1524

    Article  PubMed  Google Scholar 

  • Veron JEN (1995) Corals in space and time: biogeography and evolution of the Scleractinia. Comstock/Cornell, Ithaca, 321pp

    Google Scholar 

  • Vize PD, Hilton JD, Brady AK, Davies SW (2008) Light sensing and the coordination of coral broadcast spawning behavior. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale, pp 378–381

    Google Scholar 

  • Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012b) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316. doi:10.3389/fmicb.2012.00316, eCollection 2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells JW (1957). Coral reefs. In: Hedgpeth, JW (ed) Treatise on marine ecology and paleoecology. I. Ecology Geol. Soc. Am. Mem., vol 67, pp 7609–7631

    Google Scholar 

  • Yonge CM (1931) The significance of the relationship between corals and zooxanthellæ. Nature 128:309–311

    Article  Google Scholar 

  • Zakai D, Dubinsky Z, Avishai A, Caaras T, Chadwick NE (2006) Lunar periodicity of planula release in the reef-building coral Stylophora pistillata. Mar Ecol Prog Ser 311:93–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zvy Dubinsky or David Iluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubinsky, Z., Iluz, D. (2016). Corals and Light: From Energy Source to Deadly Threat. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_29

Download citation

Publish with us

Policies and ethics