Skip to main content

Computer-Aided Musical Orchestration Using an Artificial Immune System

  • Conference paper
  • First Online:
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

The aim of computer-aided musical orchestration is to find a combination of musical instrument sounds that approximates a target sound. The difficulty arises from the complexity of timbre perception and the combinatorial explosion of all possible instrument mixtures. The estimation of perceptual similarities between sounds requires a model capable of capturing the multidimensional perception of timbre, among other perceptual qualities of sounds. In this work, we use an artificial immune system (AIS) called opt-aiNet to search for combinations of musical instrument sounds that minimize the distance to a target sound encoded in a fitness function. Opt-aiNet is capable of finding multiple solutions in parallel while preserving diversity, proposing alternative orchestrations for the same target sound that are different among themselves. We performed a listening test to evaluate the subjective similarity and diversity of the orchestrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://labrosa.ee.columbia.edu/matlab/pvoc/.

  2. 2.

    Access http://goo.gl/weHaHI to see the test and listen to the sounds.

  3. 3.

    Access http://goo.gl/4l9NqX to listen to the target sounds and results.

References

  1. Caclin, A., McAdams, S., Smith, B., Winsberg, S.: Acoustic correlates of timbre space dimensions: a confirmatory study using synthetic tones. J. Acoust. Soc. Am. 118(1), 471–482 (2005)

    Article  Google Scholar 

  2. Camacho, A., Harris, J.: A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124(3), 1638–1652 (2008)

    Article  Google Scholar 

  3. Carpentier, G., Tardieu, D., Assayag, G., Rodet, X., Saint-James, E.: Imitative and generative orchestrations using pre-analysed sound databases. In: Proceedings of the Sound and Music Computing Conference, pp. 115–122 (2006)

    Google Scholar 

  4. Carpentier, G., Tardieu, D., Assayag, G., Rodet, X., Saint-James, E.: An evolutionary approach to computer-aided orchestration. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 488–497. Springer, Heidelberg (2007)

    Google Scholar 

  5. Carpentier, G., Assayag, G., Saint-James, E.: Solving the musical orchestration problem using multiobjective constrained optimization with a genetic local search approach. J. Heuristics 16(5), 681–714 (2010)

    Article  MATH  Google Scholar 

  6. Carpentier, G., Tardieu, D., Harvey, J., Assayag, G., Saint-James, E.: Predicting timbre features of instrument sound combinations: application to automatic orchestration. J. New Music Res. 39(1), 47–61 (2010)

    Article  Google Scholar 

  7. de Castro, L., Timmis, J.: An artificial immune network for multimodal function optimization. In: CEC 2002, Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, pp. 699–704, May 2002

    Google Scholar 

  8. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: popular, classical and Jazz music databases. In: Proceedings of the International Society for Music Information Retrieval Conference, vol. 2, pp. 287–288 (2002)

    Google Scholar 

  9. Grey, J.: Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61(5), 1270–1277 (1977)

    Article  Google Scholar 

  10. Handelman, E., Sigler, A., Donna, D.: Automatic orchestration for automatic composition. In: 1st International Workshop on Musical Metacreation (MUME 2012), pp. 43–48. AAAI (2012)

    Google Scholar 

  11. Hummel, T.: Simulation of human voice timbre by orchestration of acoustic music instruments. In: Proceedings of the International Computer Music Conference (ICMC), p. 185 (2005)

    Google Scholar 

  12. Kendall, R.A., Carterette, E.C.: Identification and blend of timbres as a basis for orchestration. Contemp. Music Rev. 9(1–2), 51–67 (1993)

    Article  Google Scholar 

  13. Krumhansl, C.L.: Why is musical timbre so hard to understand? Struct. Percept. Electroacoust. Sound Music 9, 43–53 (1989)

    Google Scholar 

  14. Lartillot, O., Toiviainen, P.: A matlab toolbox for musical feature extraction from audio. In: International Conference on Digital Audio Effects, pp. 237–244 (2007)

    Google Scholar 

  15. McAdams, S., Giordano, B.L.: The perception of musical timbre. In: Hallam, S., Cross, I., Thaut, M. (eds.) The Oxford Handbook of Music Psychology, pp. 72–80. Oxford University Press, New York (2009)

    Google Scholar 

  16. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J.: Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol. Res. 58(3), 177–192 (1995)

    Article  Google Scholar 

  17. Psenicka, D.: SPORCH: an algorithm for orchestration based on spectral analyses of recorded sounds. In: Proceedings of International Computer Music Conference (ICMC), p. 184 (2003)

    Google Scholar 

  18. Rose, F., Hetrik, J.E.: Enhancing orchestration technique via spectrally based linear algebra methods. Comput. Music J. 33(1), 32–41 (2009)

    Article  Google Scholar 

  19. Tardieu, D., Rodet, X.: An instrument timbre model for computer aided orchestration. In: 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 347–350. IEEE (2007)

    Google Scholar 

Download references

Acknowledgments

This work is financed by the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project “UID/EEA/50014/2013.” The authors would like to thank the integrated masters program in Electrical and Computer Engineering (MIEEC) from the University of Porto (FEUP) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Abreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abreu, J., Caetano, M., Penha, R. (2016). Computer-Aided Musical Orchestration Using an Artificial Immune System. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics