Skip to main content

Small Signaling Molecules and CO-Releasing Molecules (CORMs) for the Modulation of the Cellular Redox Metabolism

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Together with nitric oxide (NO) and hydrogen sulfide (H2S), carbon monoxide (CO) belongs to a class of small endogenously produced signaling molecules which has gained steadily increasing attention in the biomedical community over the last two decades due to their fascinating properties and potential therapeutic applications in human medicine. The present review compares the chemical properties of these three signaling molecules as well as their endogenous enzymatic production and then critically reviews molecular delivery systems for carbon monoxide, the so-called CO-releasing molecules (CORMs). Different trigger mechanisms to initiate the liberation of carbon monoxide from molecular carrier systems are discussed and assessed for their utility in biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol. 2012;25:769–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Szabo C. Gasotransmitters: new frontiers for translational science. Science Translat Med. 2010;2:59ps4.

    Article  Google Scholar 

  3. Weast RC, editor. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 1983.

    Google Scholar 

  4. Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. Interactions of multiple gas-transducting systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal. 2010;13:157–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Can M, Armstrong FA, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, co dehydrogenase, and acetyl-coa synthase. Chem Rev. 2014;114:4149–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cuevasanta E, Denicola A, Alvarez B, Möller MN. Solubility and permeability of hydrogen sulfide in lipid membranes. PLOS one. 2011;7:e34562.

    Article  Google Scholar 

  7. Riahi S, Rowley CN. Why can hydrogen sulfide permeate cell membranes? J Am Chem Soc. 2014;136:15111–3.

    Article  CAS  Google Scholar 

  8. Crane BR, Sudhamsu J, Patel BA. Bacterial nitric oxide synthases. Ann Rev Biochem. 2010;79:445–70.

    Article  CAS  PubMed  Google Scholar 

  9. Feng C. Mechanism of nitric oxide synthase regulation: electron transfer and interdomain interactions. Coord Chem Rev. 2012;256:393–411.

    Article  CAS  PubMed  Google Scholar 

  10. Poulos TL. Heme enzyme structure and function. Chem Rev. 2014;114:3919–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Ann Rev Pharmacol Toxicol. 2011;51:169–87.

    Article  CAS  Google Scholar 

  12. Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem. 2009;284:11601–12.

    Google Scholar 

  13. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896.

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Banerjee R. Plp-dependent H2S biogenesis. Biochim Biophys Acta. 1814;2011:1518–27.

    Google Scholar 

  15. Whiteman M, Le Trionnair S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clinical Sci. 2011;121:459–88.

    Article  CAS  Google Scholar 

  16. Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev. 2009;109:3099–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Ann Rev Pharmacol Toxicol. 1997;37:517–54.

    Article  CAS  Google Scholar 

  18. Matsui T, Unno M, Ikeda-Saito M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc Chem Res. 2010;43:240–7.

    Article  CAS  PubMed  Google Scholar 

  19. Predmore BL, Lefer DJ, Gojon G. Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal. 2012;17:119–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2:ra72 (1–8).

    PubMed  PubMed Central  Google Scholar 

  21. Wilkinson WJ, Kemp PJ. Carbon monoxide: an emerging regulator of ion channels. J Physiol. 2011;589:3055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou S, Heinemann SH, Hoshi T. Modulation of Bkca channel gating by endogenous signaling molecules. Physiology. 2009;24:26–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang PG, Xian M, Tang X, Xu X, Wen Z, Cai T, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102:1091–134.

    Article  CAS  PubMed  Google Scholar 

  24. Whiteman M, Winyard PG. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol. 2011;4:13–32.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Wang H, Xian M. Cysteine-activated hydrogen sulfide (H2S) donors. J Am Chem Soc. 2011;133:15–7.

    Article  CAS  PubMed  Google Scholar 

  26. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon-monoxide-releasing molecules - characterization of biochemical and vascular activity. Circ Res. 2002;90:e17–24.

    Article  CAS  PubMed  Google Scholar 

  27. Seixas JD, Santos MFA, Mukhopadhyay A, Coelho AC, Reis PM, Veiros LF, et al. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO. Dalton Trans. 2015;44:5058–75.

    Article  CAS  PubMed  Google Scholar 

  28. Santos MFA, Seixas JD, Coelho AC, Mukhopadhyay A, Reis PM, Romao MJ, et al. New insights into the chemistry of fac-[Ru(CO)3]2+ fragments in biologically relevant conditions: the CO releasing activity of [Ru(CO)3Cl2(1,3-thiazole)], and the X-Ray crystal structure of its adduct with lysozyme. J Inorg Biochem. 2012;117:285–91.

    Article  CAS  PubMed  Google Scholar 

  29. Bergamo A, Sava G. Ruthenium anticancer compounds: myths and realities of the emerging metal-based drugs. Dalton Trans. 2011;40:7817–23.

    Article  CAS  PubMed  Google Scholar 

  30. Bergamo A, Gaiddon C, Schellens JHM, Beijnen JH, Sava G. Approaching tumor therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem. 2012;106:90–9.

    Article  CAS  Google Scholar 

  31. Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, et al. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93:e2–8.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TR, Mann BE, Teasdale IP, Adams H, Foresti R, Green CJ, et al. Metal carbonyls as pharmaceuticals? [Ru(CO)3Cl(glycinate)], a CO-releasing molecule with an extensive aqueous solution chemistry. Dalton Trans. 2007;2007:1500–8.

    Article  Google Scholar 

  33. Santos-Silva T, Mukhopadhyay A, Seixas JD, Bernardes GJL, Romao CC, Romao MJ. Corm-3 reactivity towards proteins: the crystal structure of a Ru(II) dicarbonyl-lysozyme complex. J Am Chem Soc. 2011;133:1192–5.

    Article  CAS  PubMed  Google Scholar 

  34. Motterlini R, Sawle P, Bains S, Hammad J, Alberto R, Foresti R, et al. Corm-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J. 2004;18:284–6.

    Google Scholar 

  35. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate: a convenient in Situ Co source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc. 2001;123:3135–6.

    Article  CAS  PubMed  Google Scholar 

  36. Pitchumony TS, Spingler B, Motterlini R, Alberto R. Derivatives of sodium boranocarbonate as novel CO-releasing molecules (CO-RMs). Chimia. 2008;62:277–9.

    Article  CAS  Google Scholar 

  37. Pitchumony TS, Spingler B, Motterlini R, Alberto R. Syntheses, structural characterization and Co releasing properties of boranocarbonate [H3BCO2H] derivatives. Org Biomol Chem. 2010;8:4849–954.

    Article  CAS  PubMed  Google Scholar 

  38. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–43.

    Article  CAS  PubMed  Google Scholar 

  39. Fairlamb IJS, Duhme-Klair A-K, Lynam JM, Moulton BE, O’Brien CT, Sawle P, et al. H4-Pyrone Iron(0)Carbonyl complexes as effective CO-releasing molecules (CO-RMs). Bioorg Med Chem Lett. 2006;16:995–8.

    Google Scholar 

  40. Sawle P, Hammad J, Fairlamb IJS, Moulton BE, O’Brien CT, Lynam JM, et al. Bioactive properties of iron-containing carbon monoxide-releasing molecules. J Pharmacol Exp Ther. 2006;318:403–10.

    Google Scholar 

  41. Fairlamb IJS, Lynam JM, Moulton BE, Taylor IE, Duhme-Klair A-K, Sawle P, et al. H1-2-pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): a delicate balance between stability and CO liberation. Dalton Trans. 2007;2007:3603–5.

    Article  Google Scholar 

  42. Atkin AJ, Williams S, Motterlini R, Lynam JM, Fairlamb IJS. M2-Alkyne Dicobalt(0)Hexacarbonyl complexes as carbon monoxide-releasing molecules (CO-RMs): probing the release mechanism. Dalton Trans. 2009;2009:3653–6.

    Article  Google Scholar 

  43. Zhang WQ, Atkin AJ, Thatcher RJ, Whitwood AC, Fairlamb IJS, Lynam JM. Diversity and design of metal-based carbon monoxide-releasing molecules (CO-RMs) in aqueous systems: revealing the essential trends. Dalton Trans. 2009;2009:4351–8.

    Article  Google Scholar 

  44. Zhang W-Q, Whitwood AC, Fairlamb IJS, Lynam JM. Group 6 carbon monoxide-releasing metal complexes with biologically-compatible leaving groups. Inorg Chem. 2010;49:8941–52.

    Article  CAS  PubMed  Google Scholar 

  45. Liu H, Wang P, Zhao Q, Chen Y, Liu B, Zhang B, et al. Syntheses, toxicity and biodistribution of CO-releasing molecules containing M(CO)5 (M = Mo, W and Cr). Appl Organomet Chem. 2014;28:169–79.

    Article  CAS  Google Scholar 

  46. Bikiel DE, Solveyra EG, Di Salvo F, Milagre HMS, Eberlin MN, Correa RS, et al. Tetrachlorocarbonyliridates: water-soluble carbon monoxide releasing molecules rate-modulated by the sixth ligand. Inorg Chem. 2011;50:2334–45.

    Article  CAS  Google Scholar 

  47. Petruk AA, Vergara A, Marasco D, Bikiel DE, Doctorovich F, Estrin DA, et al. Interaction between proteins and Ir based CO releasing molecules: mechanism of adduct formation and Co release. Inorg Chem. 2014;53:10456–62.

    Article  CAS  PubMed  Google Scholar 

  48. Zobi F, Degonda A, Schaub MC, Bogdanova AY. Co releasing properties and cytoprotective effect of cis-trans-[ReII(CO)2Br2L2]n complexes. Inorg Chem. 2010;49:7313–22.

    Article  CAS  Google Scholar 

  49. Zobi F, Blacque O. Reactivity of 17 e complex [ReIIBr4(CO)2]2− with bridging aromatic ligands. Characterization and CO-releasing properties. Dalton Trans. 2011;40:4994–5001.

    Article  CAS  Google Scholar 

  50. Zobi F, Blacque O, Jacobs RA, Schaub MC, Bogdanova AY. 17 e rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application. Dalton Trans. 2012;41:370–8.

    Article  CAS  PubMed  Google Scholar 

  51. Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, Scapens D, et al. [Mn(CO)4{S2CNMe(CH2CO2H)}], a new water-soluble CO-releasing molecule. Dalton Trans. 2011;40:4230–5.

    Article  CAS  PubMed  Google Scholar 

  52. Hewison L, Crook SH, Mann BE, Meijer AJHM, Adams H, Sawle P, et al. New types of CO-releasing molecules (CO-RMs), based on iron dithiocarbamate complexes and [Fe(CO)3I(S2COEt)]. Organometallics. 2012;31:5823–34.

    Article  CAS  Google Scholar 

  53. Gonzalez MA, Fry NL, Burt R, Davda R, Hobbs A, Mascharak PK. Designed iron carbonyls as carbon monoxide (CO) releasing molecules: rapid CO release and delivery to myoglobin in aqueous buffer, and vasorelaxation of mouse aorta. Inorg Chem. 2011;50:3127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hewison L, Johnson TR, Mann BE, Meijer AJHM, Sawle P, Motterlini R. A re-investigation of [Fe(l-cysteinate)2(CO)2]2−: an example of non-heme CO coordination of possible relevance to CO binding to ion channel receptors. Dalton Trans. 2011;40:8328–34.

    Article  CAS  PubMed  Google Scholar 

  55. Marques AR, Kromer L, Gallo DJ, Penacho N, Rodrigues SS, Seixas JD, et al. Generation of carbon monoxide releasing molecules (CO-RMs) as drug candidates for the treatment of acute liver injury: targeting of CO-RMs to the liver. Organometallics. 2012;31:5810–22.

    Article  CAS  Google Scholar 

  56. Romao CC, Blättler WA, Seixas JD, Bernardes GJL. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev. 2012;41:3571–83.

    Article  CAS  PubMed  Google Scholar 

  57. Seixas JD, Mukhopadhyay A, Santos-Silva T, Otterbein LE, Gallo DJ, Rodrigues SS, et al. Characterization of a versatile organometallic Pro-Drug (CORM) for experimental CO based therapeutics. Dalton Trans. 2013;42:5985–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma M, Noei H, Mienert B, Niesel J, Bill E, Muhler M, et al. Iron metal–organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide. Chem Eur J. 2013;19:6785–90.

    Article  CAS  PubMed  Google Scholar 

  59. Hasegawa U, van der Vlies AJ, Simeoni E, Wandrey C, Hubbell JA. Carbon monoxide-releasing micelles for immunotherapy. J Am Chem Soc. 2010;132:18273–80.

    Article  CAS  Google Scholar 

  60. Fujita K, Tanaka Y, Sho T, Ozeki S, Abe S, Hikage T, et al. Intracellular CO release from composite of ferritin and ruthenium carbonyl complexes. J Am Chem Soc. 2014;136:16902–8.

    Article  CAS  PubMed  Google Scholar 

  61. Steiger C, Lühmann T, Meinel L. Oral drug delivery of therapeutic gases - carbon monoxide release for gastrointestinal diseases. J Controlled Release. 2014;189:46–53.

    Article  CAS  Google Scholar 

  62. Simpson PV, Schatzschneider U, in inorganic chemical biology: principles, technqiues and applications, Gasser G. (Editor), Wiley, Chichester, 2014

    Google Scholar 

  63. Chakraborty I, Carrington SJ, Mascharak PK. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (PhotoCORMs) to visible light and their potential as CO-donors to biological targets. Acc Chem Res. 2014;47:2603–11.

    Article  CAS  PubMed  Google Scholar 

  64. García-Gallego S, Bernardes GJL. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew Chem Int Ed. 2014;53:9712–21.

    Article  Google Scholar 

  65. Rimmer RD, Pierri AE, Ford PC. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable PhotoCORMs labilized by visible light. Coord Chem Rev. 2012;256:1509–19.

    Article  CAS  Google Scholar 

  66. Schatzschneider U. Photoactivated biological activity of transition-metal complexes. Eur J Inorg Chem. 2010;2010:1451–67.

    Article  Google Scholar 

  67. Schatzschneider U. Photocorms: light-triggered release of carbon monoxide from the coordination sphere of transition metal complexes for biological applications. Inorg Chim Acta. 2011;374:19–23.

    Article  CAS  Google Scholar 

  68. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res. 2002;90:e17–24.

    Article  CAS  PubMed  Google Scholar 

  69. Motterlini R, Foresti R, Green CJ, in carbon monoxide and cardiovascular functions, Wang R. (Editor) CRC Press, Boca Raton, Florida, USA, 2002, pp 249–71

    Google Scholar 

  70. Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs. 2005;14:1305–18.

    Article  CAS  PubMed  Google Scholar 

  71. Niesel J, Pinto A, N’Dongo HWP, Merz K, Ott I, Gust R, et al. Photoinduced Co release, cellular uptake and cytotoxicity of a Tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex. Chem Commun. 2008;2008:1798–800.

    Google Scholar 

  72. Rudolf P, Kanal F, Knorr J, Nagel C, Niesel J, Brixner T, et al. Ultrafast photochemistry of a manganese-tricarbonyl CO-releasing molecule (CORM) in aqueous solution. J Phys Chem Lett. 2013;4:596–602.

    Article  CAS  PubMed  Google Scholar 

  73. Berends H-M, Kurz P. Investigation of light-triggered carbon monoxide release from two manganese PhotoCORMs by IR. UV/Vis and EPR Spectroscopy. InorgChim Acta. 2012;380:141–7.

    CAS  Google Scholar 

  74. Nagel C, McLean S, Poole RK, Braunschweig H, Kramer T, Schatzschneider U. Introducing [Mn(CO)3(tpa-k3 N)]+ as a novel photoactivatable CO-releasing molecule with well-defined iCORM intermediates - synthesis, spectroscopy, and antibacterial activity. Dalton Trans. 2014;43:9986–97.

    Article  CAS  PubMed  Google Scholar 

  75. Ward JS, Lynam JM, Moir J, Fairlamb IJS. Visible-light-induced CO release from a therapeutically viable tryptophan-derived manganese(I) carbonyl (TryptoCORM) exhibiting potent inhibition against E. coli. Chem Eur J. 2014;20:15061–8.

    Article  CAS  PubMed  Google Scholar 

  76. Huber W, Linder R, Niesel J, Schatzschneider U, Spingler B, Kunz PC. A comparative study of tricarbonylmanganese photoactivatable CO releasing molecules (PhotoCORMs) by using the myoglobin assay and time-resolved IR spectroscopy. Eur J Inorg Chem. 2012;2012:3140–6.

    Article  CAS  Google Scholar 

  77. Kunz PC, Huber W, Rojas A, Schatzschneider U, Spingler B. Tricarbonylmanganese(I) and rhenium(I) complexes of imidazol-based phosphane ligands: influence of the substitution pattern on the CO release properties. Eur J Inorg Chem. 2009;2009:5358–66.

    Article  Google Scholar 

  78. Ward JS, Lynam JM, Moir JWB, Sanin DE, Mountford AP, Fairlamb IJS. A therapeutically viable photo-activated manganese-based CO-releasing molecule (Photo-CO-RM). Dalton Trans. 2012;41:10514–7.

    Article  CAS  PubMed  Google Scholar 

  79. Pai S, Hafftlang M, Atongo G, Nagel C, Niesel J, Botov S, et al. New modular manganese(I) tricarbonyl complexes as PhotoCORMs: In vitro detection of photoinduced carbon monoxide release using COP-1 as a fluorogenic switch-on probe. Dalton Trans. 2014;43:8664–78.

    Article  CAS  Google Scholar 

  80. Pai S, Radacki K, Schatzschneider U. Sonogashira, CuAAC, and oxime ligations for the synthesis of MnI tricarbonyl PhotoCORM peptide conjugates. Eur J Inorg Chem. 2014;2014:2886–95.

    Article  CAS  Google Scholar 

  81. Dördelmann G, Meinhardt T, Sowik T, Krueger A, Schatzschneider U. CuAAC Click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem Commun. 2012;48:11528–30.

    Article  Google Scholar 

  82. Dördelmann G, Pfeiffer H, Birkner A, Schatzschneider U. Silicium dioxide nanoparticles as carriers for photoactivatable CO releasing molecules (PhotoCORMs). Inorg Chem. 2011;50:4362–7.

    Article  PubMed  Google Scholar 

  83. Govender P, Pai S, Schatzschneider U, Smith GS. Next generation PhotoCORMs: polynuclear tricarbonylmanganese(I)-functionalized polypyridyl metallodendrimers. Inorg Chemistry. 2013;52:5470–8.

    Article  CAS  Google Scholar 

  84. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  85. Zobi F, Quaroni L, Santoro G, Zlateva T, Blacque O, Sarafimov B, et al. Live-fibroblast IR imaging of a cytoprotective photocorm activated with visible light. J Med Chem. 2013;56:6719–31.

    Article  CAS  Google Scholar 

  86. Rimmer RD, Richter H, Ford PC. A photochemical precursor for carbon monoxide release in aerated aqueous media. Inorg Chem. 2010;49:1180–5.

    Article  CAS  PubMed  Google Scholar 

  87. Pierri AE, Pallaoro A, Wu G, Ford PC. A luminescent and biocompatible PhotoCORM. J Am Chem Soc. 2012;134:18197–200.

    Article  CAS  PubMed  Google Scholar 

  88. Pierri A, Huang P-J, Garcia JV, Stanfill JG, Chui M, Wu G, Zheng N, Ford PC. A PhotoCORM Nanocarrier for CO Release Using NIR Light. Chem Commun. 2014.

    Google Scholar 

  89. Gonzalez MA, Carrington SJ, Fry NL, Martinez JL, Mascharak PK. Syntheses, structures, and properties of new manganese carbonyls as photoactive CO-releasing molecules: design strategies that lead to CO photolability in the visible region. Inorg Chem. 2012;51:11930–40.

    Article  CAS  PubMed  Google Scholar 

  90. Gonzalez MA, Yim MA, Cheng S, Moyes A, Hobbs AJ, Mascharak PK. Manganese carbonyls bearing tripodal polypyridine ligands as photoactive carbon monoxide-releasing molecules. Inorg Chem. 2012;51:601–8.

    Article  CAS  PubMed  Google Scholar 

  91. Carrington SJ, Chakraborty I, Alvarado JR, Mascharak PK. Differences in the CO photolability of cis- and trans-[RuCl2(azpy)(CO)2] complexes: effect of metal-to-ligand back-bonding. Inorg Chim Acta. 2013;407:121–5.

    Article  CAS  Google Scholar 

  92. Gonzalez MA, Carrington SJ, Chakraborty I, Olmstead MM, Mascharak PK. Photoactivity of mono- and dicarbonyl complexes of ruthenium(II) bearing an N, N, S-donor ligand: role of ancillary ligands on the capacity of CO photorelease. Inorg Chem. 2013;52:11320–31.

    Article  CAS  PubMed  Google Scholar 

  93. Carrington SJ, Chakraborty I, Bernard JML, Mascharak PK. Synthesis and Characterization of a “Turn-on” PhotoCORM for Trackable CO Delivery to Biological Targets. ACS Med Chem Lett. 2014.

    Google Scholar 

  94. Jackson CS, Schmitt S, Dou QP, Kodanko JJ. Synthesis, characterization, and reactivity of the stable iron carbonyl complex [Fe(CO)(N4py)](ClO4)2: photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation. Inorg Chem. 2011;50:5336–8.

    Article  CAS  PubMed  Google Scholar 

  95. Kretschmer R, Gessner G, Görls H, Heinemann SH, Westerhausen M. Dicarbonyl-Bis(cysteamine)Iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem. 2011;105:6–9.

    Article  CAS  PubMed  Google Scholar 

  96. Poh HT, Sim BT, Chwee TS, Leong WK, Fan WY. The dithiolate-bridged diiron hexacarbonyl complex Na2[(M-SCH2CH2COO)Fe(CO)3]2 as a water-soluble photocorm. Organometallics. 2014;33:959–63.

    Article  CAS  Google Scholar 

  97. Velásquez VPL, Jazzazi TMA, Malassa A, Görls H, Gessner G, Heinemann SH, et al. Derivatives of photosensitive CORM-S1 – CO complexes of iron and ruthenium with the (OC)2M(S–C–C–NH2)2 fragment. Eur J Inorg Chem. 2012;2012:1072–8.

    Article  Google Scholar 

  98. Antony LAP, Slanina T, Šebej P, Šolomek T, Klán P. Fluorescein analogue xanthene-9-carboxylic acid: a transition-metal-free CO releasing molecule activated by green light. Org Lett. 2013;15:4552–5.

    Article  CAS  PubMed  Google Scholar 

  99. Peng P, Wang C, Shi Z, Johns VK, Ma L, Oyer J, et al. Visible-light activatable organic CO-releasing molecules (PhotoCORMs) that simultaneously generate fluorophores. Org Biomol Chem. 2013;11:6671–4.

    Article  CAS  PubMed  Google Scholar 

  100. Romanski S, Kraus B, Schatzschneider U, Neudörfl J, Amslinger S, Schmalz H-G. Acyloxybutadiene iron tricarbonyl complexes as enzyme-triggered Co-releasing molecules (ET-CORMs). Angew Chem Int Ed. 2011;50:2392–6.

    Article  CAS  Google Scholar 

  101. Romanski S, Kraus B, Guttentag M, Schlundt W, Rücker H, Adler A, et al. Acyloxybutadiene tricarbonyl iron complexes as enzyme-triggered CO-releasing molecules (ET-CORMs): a structure-activity relationship study. Dalton Trans. 2012;41:13862–75.

    Article  CAS  PubMed  Google Scholar 

  102. Romanski S, Rücker H, Stamellou E, Guttentag M, Neudörfl J, Alberto R, et al. Iron dienylphosphate tricarbonyl complexes as water-soluble enzyme-triggered CO-releasing molecules (ET-CORMs). Organometallics. 2012;31:5800–9.

    Article  CAS  Google Scholar 

  103. Botov S, Stamellou E, Romanski S, Guttentag M, Alberto R, Neudörfl J, et al. Synthesis and performance of acyloxy-diene-Fe(CO)3 complexes with variable chain lengths as enzyme-triggered carbon monoxide-releasing molecules. Organometallics. 2013;32:3587–94.

    Article  CAS  Google Scholar 

  104. Romanski S, Stamellou E, Jaraba JT, Storz D, Kramer BK, Hafner M, et al. Enzyme-triggered CO-releasing molecules (ET-CORMs): evaluation of biological activity in relation to their structure. Free Rad Biol Med. 2013;65:78–88.

    Article  CAS  PubMed  Google Scholar 

  105. Kunz PC, Meyer H, Barthel J, Sollazzo S, Schmidt AM, Janiak C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chem Commun. 2013;49:4896–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P.S. thanks the Alexander-von-Humboldt Foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schatzschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simpson, P.V., Schatzschneider, U. (2016). Small Signaling Molecules and CO-Releasing Molecules (CORMs) for the Modulation of the Cellular Redox Metabolism. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_13

Download citation

Publish with us

Policies and ethics