Skip to main content

Deep Learning over Multi-field Categorical Data

– A Case Study on User Response Prediction

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

Predicting user responses, such as click-through rate and conversion rate, are critical in many web applications including web search, personalised recommendation, and online advertising. Different from continuous raw features that we usually found in the image and audio domains, the input features in web space are always of multi-field and are mostly discrete and categorical while their dependencies are little known. Major user response prediction models have to either limit themselves to linear models or require manually building up high-order combination features. The former loses the ability of exploring feature interactions, while the latter results in a heavy computation in the large feature space. To tackle the issue, we propose two novel models using deep neural networks (DNNs) to automatically learn effective patterns from categorical feature interactions and make predictions of users’ ad clicks. To get our DNNs efficiently work, we propose to leverage three feature transformation methods, i.e., factorisation machines (FMs), restricted Boltzmann machines (RBMs) and denoising auto-encoders (DAEs). This paper presents the structure of our models and their efficient training algorithms. The large-scale experiments with real-world data demonstrate that our methods work better than major state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the leverage of deep learning models on ad CTR estimation has been claimed in industry (e.g., [42]), there is no detail of the models or implementation.

  2. 2.

    The source code with demo data: https://github.com/wnzhang/deep-ctr.

  3. 3.

    Theano: http://deeplearning.net/software/theano/.

  4. 4.

    Besides AUC, root mean square error (RMSE) is also tested. However, positive/negative examples are largly unbalanced in ad click scenario, and the empirically best regression model usually provides the predicted CTR close to 0, which results in very small RMSE values and thus the improvement is not well captured.

  5. 5.

    Some advanced Bayesian methods for hyperparameter tuning [34] are not considered in this paper and may be investigated in the future work.

References

  1. Beck, J.E., Park Woolf, B.: High-level student modeling with machine learning. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 584–593. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of deep networks. In: NIPS, vol. 19, p. 153 (2007)

    Google Scholar 

  4. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as generative models. In: NIPS, pp. 899–907 (2013)

    Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Broder, A.Z.: Computational advertising. In: SODA, vol. 8, pp. 992–992 (2008)

    Google Scholar 

  7. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. JMLR 12, 2493–2537 (2011)

    MATH  Google Scholar 

  8. Deng, L., Abdel-Hamid, O., Yu, D.: A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion. In: ICASSP, pp. 6669–6673. IEEE (2013)

    Google Scholar 

  9. Elizondo, D., Fiesler, E.: A survey of partially connected neural networks. Int. J. Neural Syst. 8(05n06), 535–558 (1997)

    Article  Google Scholar 

  10. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? JMLR 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  12. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search engine. In: ICML, pp. 13–20 (2010)

    Google Scholar 

  13. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: ICASSP, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  14. Hand, D.J., Yu, K.: Idiot’s bayes not so stupid after all? Int. Statist. Rev. 69(3), 385–398 (2001)

    MATH  Google Scholar 

  15. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., et al.: Practical lessons from predicting clicks on ads at facebook. In: ADKDD, pp. 1–9. ACM (2014)

    Google Scholar 

  16. Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  17. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural comput. 14(8), 1771–1800 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: CIKM, pp. 2333–2338 (2013)

    Google Scholar 

  20. Juan, Y.C., Zhuang, Y., Chin, W.S.: 3 idiots approach for display advertising challenge. In: Internet and Network Economics, pp. 254–265. Springer, Heidelberg (2011)

    Google Scholar 

  21. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. PAMI 20(3), 226–239 (1998)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  23. Kurashima, T., Iwata, T., Takaya, N., Sawada, H.: Probabilistic latent network visualization: inferring and embedding diffusion networks. In: KDD, pp. 1236–1245. ACM (2014)

    Google Scholar 

  24. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. JMLR 10, 1–40 (2009)

    MATH  Google Scholar 

  25. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553) (2015)

    Google Scholar 

  26. Lee, K., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display advertising from past performance data. In: KDD, pp. 768–776. ACM (2012)

    Google Scholar 

  27. Liao, H., Peng, L., Liu, Z., Shen, X.: ipinyou global rtb bidding algorithm competition dataset. In: ADKDD, pp. 1–6. ACM (2014)

    Google Scholar 

  28. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin, D., et al.: Ad click prediction: a view from the trenches. In: KDD, pp. 1222–1230. ACM (2013)

    Google Scholar 

  29. Oentaryo, R.J., Lim, E.P., Low, D.J.W., Lo, D., Finegold, M.: Predicting response in mobile advertising with hierarchical importance-aware factorization machine. In: WSDM (2014)

    Google Scholar 

  30. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)

    Article  Google Scholar 

  31. Rendle, S.: Factorization machines with libfm. ACM TIST 3(3), 57 (2012)

    Google Scholar 

  32. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: WWW, pp. 521–530. ACM (2007)

    Google Scholar 

  33. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: CIKM (2014)

    Google Scholar 

  34. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: NIPS, pp. 2951–2959 (2012)

    Google Scholar 

  35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147 (2013)

    Google Scholar 

  37. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  38. Trofimov, I., Kornetova, A., Topinskiy, V.: Using boosted trees for click-through rate prediction for sponsored search. In: WINE, p. 2. ACM (2012)

    Google Scholar 

  39. Wang, X., Li, W., Cui, Y., Zhang, R., Mao, J.: Click-through rate estimation for rare events in online advertising. In: Online Multimedia Advertising: Techniques and Technologies, pp. 1–12 (2010)

    Google Scholar 

  40. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV, pp. 2018–2025. IEEE (2011)

    Google Scholar 

  41. Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising. In: KDD, pp. 1077–1086. ACM (2014)

    Google Scholar 

  42. Zou, Y., Jin, X., Li, Y., Guo, Z., Wang, E., Xiao, B.: Mariana: Tencent deep learning platform and its applications. VLDB 7(13), 1772–1777 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, W., Du, T., Wang, J. (2016). Deep Learning over Multi-field Categorical Data. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics