Skip to main content

Ensemble of Heterogeneous Flexible Neural Tree for the Approximation and Feature-Selection of Poly (Lactic-co-glycolic Acid) Micro- and Nanoparticle

  • Conference paper
  • First Online:
Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 427))

Abstract

In this work, we used an adaptive feature-selection and function approximation model, called, flexible neural tree (FNT) for predicting Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticle’s dissolution-rates that bears significant role in the pharmaceutical, medical, and drug manufacturing industries. Several factor influences PLGA nanoparticles dissolution-rate prediction. FNT model enable us to deal with feature-selection and prediction simultaneously. However, a single FNT model may or may not offer a generalized solution. Hence, to build a generalized model, we used an ensemble of FNTs. In this work, we have provided a comprehensive study for examining the most significant (influencing) features that influences dissolution rate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astete, C.E., Sabliov, C.M.: Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17(3), 247–289 (2006)

    Article  Google Scholar 

  2. Szlęk, J., Paclawski, A., Lau, R., Jachowicz, R., Mendyk, A.: Heuristic modeling of macromolecule release from PLGA microspheres. Int. J. Nanomed. 8(1), 4601–4611 (2013)

    Google Scholar 

  3. van der Maaten, L.J, Postma, E.O, van den Herik, H.J.: Dimensionality reduction: a comparative review. Technical report TiCC TR 2009-005

    Google Scholar 

  4. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487–492 (2004)

    Article  Google Scholar 

  5. Brodbeck, K.J., DesNoyer, J.R., McHugh, A.J.: Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. J. Controlled Release 62(3), 333–344 (1999)

    Article  Google Scholar 

  6. Makadia, H.K., Siegel, S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3), 1377–1397 (2011)

    Article  Google Scholar 

  7. Fredenberg, S., Wahlgren, M., Reslow, M., Axelsson, A.: The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems: a review. Int. J. Pharm. 415(1–2), 34–52 (2011)

    Article  Google Scholar 

  8. Kang, J., Schwendeman, S.P.: Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol. Pharm. 4(1), 104–118 (2007)

    Article  Google Scholar 

  9. Kang, J., Lambert, O., Ausborn, M., Schwendeman, S.P.: Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders. Int. J. Pharm. 357(1), 235–243 (2008)

    Article  Google Scholar 

  10. Blanco, M.D., Alonso, M.J.: Development and characterization of protein loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 43(3), 287–294 (1997)

    Article  Google Scholar 

  11. Mainardes, R.M., Evangelista, R.C.: PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm. 290(1–2), 137–144 (2005)

    Article  Google Scholar 

  12. Zygourakis, K., Markenscoff, P.A.: Computer-aided design of bioerodible devices with optimal release characteristics: a cellular automata approach. Biomaterials 17(2), 125–135 (1996)

    Article  Google Scholar 

  13. Gopferich, A.: Mechanisms of polymer degradation and erosion. Biomaterials 17(2), 103–114 (1996)

    Article  Google Scholar 

  14. Siepmann, J., Faisant, N., Benoit, J.P.: A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharm. Res. 19(12), 1885–1893 (2002)

    Article  Google Scholar 

  15. Ojha, V.K., Jackowski, K., Abraham, A., Snášel, V.: Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate. Int. J. Nanomed. 10, 1119–1129 (2015)

    Article  Google Scholar 

  16. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PRT, Upper Saddle River (1994)

    MATH  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  18. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  19. Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series forecasting using flexible neural tree model. Inform. Sci. 174(3), 219–235 (2005)

    Article  MathSciNet  Google Scholar 

  20. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  21. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, US (2010)

    Google Scholar 

  22. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier systems, pp. 1−15. Springer, Berlin (2000)

    Google Scholar 

  23. Mendes-Moreira, J., Soares, C., Jorge, A.M., et al.: Ensemble approaches for regression: a survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012)

    Article  MATH  Google Scholar 

  24. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  25. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  27. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the IPROCOM Marie Curie Initial Training Network, funded through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/, under REA grant agreement number 316555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Kumar Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ojha, V.K., Abraham, A., Snasel, V. (2016). Ensemble of Heterogeneous Flexible Neural Tree for the Approximation and Feature-Selection of Poly (Lactic-co-glycolic Acid) Micro- and Nanoparticle. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A., Snasel, V., Alimi, A. (eds) Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015. Advances in Intelligent Systems and Computing, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-29504-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29504-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29503-9

  • Online ISBN: 978-3-319-29504-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics