Skip to main content

North Atlantic Rhodolith Beds

  • Chapter
  • First Online:
Rhodolith/Maërl Beds: A Global Perspective

Abstract

Beds of coralline algal sediment form ecologically and economically important habitats in the North Atlantic. These habitats can occur from the intertidal down to 60 m depth, and they are locally abundant in several countries. Thirteen species of coralline algae form rhodoliths or maerl in this region; Lithothamnion corallioides, L. glaciale, L. tophiforme and Phymatolithon calcareum are the most widely recorded. The structure and biodiversity of these habitats is destroyed by dredging and can be degraded by towed demersal fishing gear and by mussel and salmon farming. Legislation has been passed in the European Union (EU) to protect P. calcareum and L. corallioides which should be extended to include the other maerl species from the region. Outside the EU there is a lack of baseline information concerning the importance of these habitats: a fuller understanding of their role may lead to protection in Scandinavia, Iceland and the Atlantic coasts of Canada and the United States. The design of such protected areas would need to consider the ongoing effects of invasive species, ocean warming and acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH (1966) Distribution of saxicolous crustose corallines in the northwestern North Atlantic. J Phycol 2:49–54

    Article  Google Scholar 

  • Adey WH (1968) The distribution of crustose corallines on the Icelandic coast. Sci Icel 1:16–25

    Google Scholar 

  • Adey WH (1970) The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. J Phycol 6:269–276

    Google Scholar 

  • Adey WH (1971) The sublittoral distribution of crustose corallines on the Norwegian coast. Sarsia 46:41–58

    Article  Google Scholar 

  • Adey WH, Adey PJ (1973) Studies of the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Brit Phycol J 8:343–407

    Article  Google Scholar 

  • Adey WH, Hayek L-AC (2011) Elucidating marine biogeography with macrophytes: quantitative analysis of the North Atlantic Supports the thermogeographic model and demonstrates a distinct subarctic region in the Northwestern Atlantic. Northeastern Naturalist 18: monograph 8: 1–128

    Google Scholar 

  • Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geo Soc Am Bull 84:883–904

    Article  Google Scholar 

  • Adey WH, McKibbin DL (1970) Studies on the maërl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Bot Mar 13:100–106

    Article  Google Scholar 

  • Adey WH, Steneck, RS (2001). Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine al

    Google Scholar 

  • Adey WH, Chamberlain YM, Irvine LM (2005) An SEM-based analysis of the morphology, anatomy and reproduction of Lithothamnion tophiforme (Esper) Unger (Corallinales, Rhodophyta), with a comparative study of associated North Atlantic Arctic/Subarctic Melobesioideae. J Phycol 41:1010–1024

    Article  Google Scholar 

  • Adey WH, Lindstorm SC, Hommersand MH, Muller KM (2008) The biogeographic origin of arctic endemic seaweeds: a thermogeographic view. J Phycol 44:1384–1394

    Article  Google Scholar 

  • Alfonso-Carrillo J, Gil-Rodríguez MC (1982) Sobre la presencia de un fondo de “Maerl” en las Islas Canarias. Collect Bot 13:703–708

    Google Scholar 

  • Athanasiadis A (1996) Taxonomisk litteratur och biogeografi av Skandinaviska rödalger och brunalger. Algologia, Göteborg

    Google Scholar 

  • Bárbara I, Cremades J, Veiga AJ (2004) Floristic study of a maërl and gravel subtidal bed in the Ría de Arousa (Galicia, Spain). Bot Complutensis 28:27–37

    Google Scholar 

  • Barberá C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall‐Spencer JM, De La Huz C, Lanfranco E, Lastra M, Moore PG, Mora J, Pita ME, Ramos‐Esplá AA, Rizzo R, Sánchez‐Mata A, Seva A, Schembri PJ, Valle C (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv 13:S65–S76

    Article  Google Scholar 

  • BIOMAERL Team (1999) Final Report, BIOMAERL project (Coordinator: Moore PG, University Marine Biological Station Millport, Scotland), EC Contract No. MAS3-CT95-0020, 1: 1–541, 2: 542–973 pp. + Appendix

    Google Scholar 

  • Birkett DA, Maggs CA, Dring MJ (1998a) Maerl (Volume V). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Acottish Association for Marine Science. (UK Marine SACs Project)

    Google Scholar 

  • Birkett DA, Maggs CA, Dring MJ, Boaden PJS (1998b) Infralittoral reef biotopes with kelp species. An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scott Assoc Mar Sci (UK Marine SACs Project)

    Google Scholar 

  • Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phys Chem Chem Phys 42:606–612

    Google Scholar 

  • Blake C, Maggs CA, Reimer P (2007) Use of radiocarbon dating to interpret past enviroments of maerl beds. Cienc Mar 33:385–397

    Google Scholar 

  • Blunden G, Farnham WF, Jephson N, Barwell CJ, Fenn RH, Plunkett BA (1981) The composition of maërl beds of economic interest in northern Brittany, Cornwall and Ireland. In: Levring T (ed) Proceedings 10th international seaweed symposium. De Gruyter, Berlin

    Google Scholar 

  • Bosence DWJ (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1979) Live and dead faunas from coralline algal gravels, Co.Galway. Palaentology 22:449–478

    Google Scholar 

  • Bosence DWJ (1980) Sedimentary facies, production rates and facies models for recent coralline algal gravels, Co. Galway, Ireland. Geophys J 15:91–111

    Google Scholar 

  • Bosence DWJ (1983) Descriptions and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin

    Google Scholar 

  • Bosence DWJ, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquat Conserv 13:S21–S31

    Article  Google Scholar 

  • Bosselini A, Ginsburg RN (1971) Form and intertidal structure of recent algal nodules (rhodolites) from Bermuda. J Geophys Res 79:669–682

    Google Scholar 

  • Büdenbender J, Riebesell U, Form A (2011) Calcification of the Artic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87

    Article  Google Scholar 

  • Burdett H, Aloisio E, Calosi P, Findlay HS, Widdicombe S, Hatton AD, Kamenos NA (2012) The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae. Mar Biol Res 8:756–763

    Article  Google Scholar 

  • Cabioch J (1968) Quelques particularités anatomiques du Lithophyllum fasciculatum (Lamarck) Foslie. Bulletin de la Société botanique de France 115:173–186

    Article  Google Scholar 

  • Cabioch J (1969) Les fonds de maërl de la Baie de Morlaix et leur peupplement vegetal. Cah Biol Mar 10:139–161

    Google Scholar 

  • Cabioch J (1974) Un fond de maerl de l’Archipel de Madère et son peuplement végétal. Bulletin de la Société Phycologique de la France 19:74–82

    Google Scholar 

  • Davison DM, Hughes DJ (1998) Zostera Biotopes (volume I). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project)

    Google Scholar 

  • De Grave S, Whitaker A (1999) A census of maërl beds in Irish waters. A quat Conserv 9:303–311

    Article  Google Scholar 

  • De Grave S, Fazakerley H, Kelly L, Guiry MD, Ryan M, Walshe J (2000) A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Mar Resour Ser (Irel) 10:1–44

    Google Scholar 

  • Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39

    Article  Google Scholar 

  • Emerton V, Choi E (eds) (2008) Essential guide to food additives. Leatherhead Food International Ltd, London

    Google Scholar 

  • Farrow GE, Cucci M, Scoffin TP (1978) Calcareous sediments on the nearshore continental shelf of western Scotland. P Roy Soc Edinb B 76:55–76

    Google Scholar 

  • Foslie M (1895) The Norwegian forms of Lithothamnion. Kongelige Norske Videnskabers Selskabs Skrifter 1894:29–208

    Google Scholar 

  • Foslie M (1899) Some new or critical lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter 1898:1–19

    Google Scholar 

  • Foslie M (1905) Remarks on northern Lithothamnia. Det Kongelige Norske Videnskabers Selskabs Skrifter 1905:1–138

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Frantz BR, Foster MS, Riosmena-Rodriguez R (2005) Clathromorphum nereostratum (Corallinales, Rhodophyta): the oldest alga? J Phycol 41:770–773

    Article  Google Scholar 

  • Freiwald A (1995) Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway. Beit Paläontol Österreichs 20:7–19

    Google Scholar 

  • Gagnon P, Matheson K, Stapleton M (2012) Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot Mar 55:85–99

    Article  Google Scholar 

  • Grall J (2002) Biodiversité spécifique et fonctionnelle du maerl : réponses a la variabilité de l’environnement côtier. PhD thesis, Université de Bretagne Occidentale, France, 302 pp

    Google Scholar 

  • Grall J, Glemarec M (1997) Biodiversité des fonds de maerl en Bretagne: Approche fonctionelle et impacts anthropiques. Vie et Milieu 47:339–349

    Google Scholar 

  • Grall J, Hall-Spencer JM (2003) Problems facing maerl conservation in Brittany. Aquat Conserv 13:S55–S64

    Article  Google Scholar 

  • Grall J, Le Loch F, Guyonnet B, Riera P (2006) Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J Exp Mar Biol Ecol 338:1–15

    Article  Google Scholar 

  • Gunnarsson K (1977) Borugar a koralsetlogum i Amarfirdi. Hafransoknir 10:3–10

    Google Scholar 

  • Hall-Spencer JM (1998) Conservation issues relating to maerl beds as habitats for molluscs. J Conchol Spec Publ 2:271–285

    Google Scholar 

  • Hall-Spencer JM, Atkinson RJA (1999) Upogebia deltaura (Crustacea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J Mar Biol Ass UK 79:871–880

    Article  Google Scholar 

  • Hall-Spencer JM, Bamber R (2007) Effects of salmon farming on benthic Crustacea. Cienc Mar 33:353–366

    Google Scholar 

  • Hall-Spencer JM, Moore PG (2000) Scallop dredging has profound, long-term impacts on maerl habitats. ICES J Mar Sci 57:1407–1415

    Article  Google Scholar 

  • Hall-Spencer JM, Grall J, Moore PG, Atkinson RJA (2003) Bivalve fishing and maerl-bed conservation in France and the UK –retrospect and prospect. Aquat Conserv 13:S33–S41

    Article  Google Scholar 

  • Hall-Spencer JM, White N, Gillespie G, Gillham K, Foggo A (2006) Impact of fish farms on maerl beds in strongly tidal areas. Mar Ecol Prog Ser 326:1–9

    Article  Google Scholar 

  • Hall-Spencer JM, Kelly J, Maggs CA (2010) Background Document for maerl beds. OSPAR commission

    Google Scholar 

  • Hauton C, Hall-Spencer JM, Moore PG (2003) An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl. ICES J Mar Sci 60:381–392

    Article  Google Scholar 

  • Hernández-Kantún JJ, Riosmena-Rodríguez R, Adey WH, Rindi F (2014) Analysis of the cox 2–3 spacer region for population diversity and taxonomic implications in rhodolith-forming species (Rhodophyta, Corallinales). Phys Chem Chem Phys 190:331–354

    Google Scholar 

  • Hernández-Kantún JJ, Rindi F, Adey HW, Le Gall L, Peña V, Gabrielson P (2015) Sequencing type material resolves the identity and distribution of the generitype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta). J Phycol 51:791–807

    Article  Google Scholar 

  • Hernandez-Kantun JJ, Riosmena-Rodriguez R, Hall-Spencer J, Peña V, Maggs CA, Rindi F (2015) Phylogenetic analysis of rhodolith formation in the Corallinales (Rhodophyta). Eur J Phycol 50:46–61

    Article  Google Scholar 

  • Hily C, Potin P, Floch JY (1992) Structure of subtidal algal assemblages on soft-bottom sediments: fauna/flora interactions and role of disturbances in the Bay of Brest, France. Mar Ecol Prog Ser 85:115–130

    Article  Google Scholar 

  • Hinojosa-Arango G, Maggs C, Johnson M (2009) Like a rolling stone: the mobility of maërl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90:517–528

    Article  Google Scholar 

  • Irvine LM, Chamberlain YM (1994) Seaweeds of the British Isles. Volume 1 Rhodophyta Part 2B Corallinales, Hildenbrandiales. HMSO, London

    Google Scholar 

  • Johansen HW (1981) Coralline algae, A first synthesis. CRC Publishing, Boca Raton

    Google Scholar 

  • Johnson MP, Edwards M, Bunker F, Maggs C (2005) Algal epiphytes of Zostera marina: variation in assemblage structure from individual leaves to regional scale. Aquat Bot 82:12–26

    Article  Google Scholar 

  • Kamenos NA (2010) North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci U S A 107:22442–22447

    Article  Google Scholar 

  • Kamenos NA, Law A (2010) Temperature controls on coralline algal skeletal growth. J Phycol 46:331–335

    Article  Google Scholar 

  • Kamenos NA, Moore PG (2004) Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L). J Exp Mar Biol Ecol 313:241–254

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2003) Substratum heterogeneity of dredged vs un-dredged maerl grounds. J Mar Biol Assoc UK 83:411–413

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Nursery-area function of maërl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar Ecol Prog Ser 274:183–189

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004c) Attachment of the juvenile queen scallop (Aequipecten opercularis (L) to maerl in mesocosm conditions; juvenile hábitat selection. J Exp Mar Biol Ecol 306:139–155

    Article  Google Scholar 

  • Kamenos NA, Cusack M, Moore PG (2008) Coralline algae are global palaeothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72:771–779

    Article  Google Scholar 

  • Kamenos NA, Hoey T, Nienow P, Fallick A, Claverie T (2012) Reconstructing Greenland ice sheet runoff using coralline algae. Geology G33405.1

    Google Scholar 

  • Keegan BF (1974) The macrofauna of maërl substrates on the West Coast of Ireland. Cah Biol Mar 15:513–530

    Google Scholar 

  • Kulka DW, Simpson MR, Hooper RG (2004) Changes in distribution and habitat associations of Wolffish (Anarhichidae) in the Grand Banks and Labrador Shelf. Research document for the Canadian Science Advisory Secretariat

    Google Scholar 

  • Leliaert F, Boedeker C, Peña V, Bunker F, Verbruggen H, De Clerck O (2009) Cladophora rhodolithicola sp. nov. (Cladophorales, Chlorophyta), a diminutive species from European maerl beds. Eur J Phycol 44:155–169

    Article  Google Scholar 

  • Lemoine M (1910) Repartition et mode de vie du maërl (Lithothamnium calcareum) aux environs de Concarneau (Finistere). Ann L’Inst Oceanogr, Monaco 1(3):1–28

    Google Scholar 

  • Maggs CA (1983a) Seasonal study of seaweed communities on subtidal maerl (unattached coralline algae) in Galway Bay, Ireland. Prog Underw Sci 9:27–40

    Google Scholar 

  • Maggs CA (1983b) A phenological study of the epiflora of two maerl beds in Galway Bay. Unpublished Ph.D. thesis, Galway: University College, Galway, Ireland

    Google Scholar 

  • Maggs CA, Guiry MD (1988 ‘1987’) Gelidiella calcicola sp. nov. (Rhodophyta) from the British Isles and Northern France. Brit Phycol J 22(4):417–434

    Google Scholar 

  • Maggs CA, Guiry MD (1989) A re-evaluation of the crustose red algal genus Cruoria and the family Cruoriaceae. Brit Phycol J 24:253–269

    Article  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Taimour J, Kelly J, Olsen J, Perez KE, Stam W, Vainola R, Viard F, Wares J (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122

    Article  Google Scholar 

  • Mendoza ML, Cabioch J (1998) Étude comparée de la reproduction de Phymatolithon calcareum (Pallas) Adey and McKibbin et Lithothamnion corallioides (P. and H. Crouan) P. and H. Crouan (Corallinales, Rhodophyta), et reconsidérations sur la définition des genres. Can J Bot 76:1433–1445

    Google Scholar 

  • Nelson WA (2009) Calcified macroalgae, critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  Google Scholar 

  • Noisette F, Duong G, Six C, Davoult D, Martin S (2013) Effects of elevated p CO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49:746–757

    Article  Google Scholar 

  • OSPAR (2006) Case reports for the initial list of threatened species and/or declining species and habitats in the OSPAR region. OSPAR Commission, 150 p

    Google Scholar 

  • Otero-Schmitt J, Pérez-Cirera JL (2002) Infralittoral benthic biocenoses from northern Ría de Muros, Atlantic coast of northwest Spain. Bot Mar 45:93–122

    Article  Google Scholar 

  • Pardo C, López L, Peña V, Hernández-Kantún JJ, Le Gall L, Bárbara I, Barreiro L (2014) A multilocus species delimitation reveals a striking number of maërl species in the OSPAR region. PLoS One 9(8):e104073

    Article  Google Scholar 

  • Peña V (2010) Estudio ficológico de los fondos de maerl y cascajo en el noroeste de la Península Ibérica. Tesis doctoral, Universidade da Coruña

    Google Scholar 

  • Peña V, Bárbara I (2006) Los fondos marinos de maërl del Parque Nacional de las Islas Atlánticas (Galicia, España): distribución, abundancia y flora asociada. NACC Nova Acta Cient Compostel Biol 15:7–25

    Google Scholar 

  • Peña V, Bárbara I (2008a) Maërl community in the north-western Iberian peninsula: a review of floristic studies and long-term changes. Aquat Conserv 18:339–366

    Article  Google Scholar 

  • Peña V, Bárbara I (2008b) Biological importance of an Atlantic European maerl bed off Benencia Island (northwest Iberian Peninsula). Bot Mar 51:493–505

    Article  Google Scholar 

  • Peña V, Bárbara I (2009) Distribution of the Galician maerl beds and their shape classes (Atlantic Iberian Peninsula); proposal of areas in future conservation actions. Cah Biol Mar 50:353–368

    Google Scholar 

  • Peña V, Bárbara I (2010a) Seasonal patterns in the maërl community of shallow European Atlantic beds and their use as a baseline for monitoring studies. Eur J Phycol 45:327–343

    Article  Google Scholar 

  • Peña V, Bárbara I (2010b) New records of crustose seaweeds associated with subtidal maërl beds and gravel bottoms in Galicia (NW Spain). Bot Mar 53:41–61

    Article  Google Scholar 

  • Peña V, Bárbara I (2010c) Plan integral de conservación de las algas formadoras de los fondos de maerl (Lithothamnion corallioides (P.L. Crouan and H.M. Crouan) y Phymatolithon calcareum (Pallas) Adey and McKibbin) en Galicia, 249 pp

    Google Scholar 

  • Peña V, Bárbara I (2013) Non-coralline crustose algae associated with maerl beds in Portugal: a re-appraisal of their diversity in the Atlantic Iberian beds. Bot Mar 56(5–6):481–493

    Google Scholar 

  • Peña V, Adey WH, Riosmena-Rodriguez R, Yung M-Y, Choi H-G, Afonso-Carrillo J, Bárbara I (2011) Mesophyllum sphaericum sp. nov. (Corallinales, Rhodophyta): a new maërl –forming species from the northeast Atlantic. J Phycol 47:911–927

    Article  Google Scholar 

  • Peña V, Hernandez-Kantun JJ, Grall J, Pardo C, Lopez L, Barbara I, Le Gall L, Barreiro R (2014a) Detection of gametophytes in the maerl-forming species Phymatolithon calcareum (Melobesioideae, Corallinales) assessed by DNA barcoding. Cryptog Algol 35(1):15–25

    Article  Google Scholar 

  • Peña V, Bárbara I, Grall J, Maggs CA, Hall-Spencer JM (2014b) The diversity of seaweeds on maerl in the NE Atlantic. Mar Biodiv 44(4):533–551

    Article  Google Scholar 

  • Peña V, De Clerck O, Afonso-Carrillo J, Ballesteros E, Bárbara I, Barreiro R, Le Gall L (2015a) An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur J Phycol 50(1):20–36

    Article  Google Scholar 

  • Peña V, Pardo C, López L, Carro B, Hernandez-Kantun JJ, Adey WH, Bárbara I, Barreiro R and Le Gall L (2015b) Phymatolithon lusitanicum sp. nov. (Hapalidiales, Rhodophyta): the third most abundant maerl-forming species in the Atlantic Iberian Peninsula. Cryptogamie, Algol. 36(4): 429–459

    Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    Article  Google Scholar 

  • Potin P, Floch JY, Augris J, Cabioch J (1990) Annual growth rate of calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204(205):263–267

    Article  Google Scholar 

  • Ragazzola F, Foster LC, Form AU, Buscher J, Hansteen TH, Fietzke J (2013) Phenotypic plasticity of coralline algae in a High CO2 world. Ecol Evol 3:3436–3446

    Google Scholar 

  • Rico JM, Guiry MD (1997) Life history and reproduction of Gelidium maggsiae sp. nov. (Rhodophyta, Gelidiales) from Ireland. Eur J Phycol 32:267–277

    Article  Google Scholar 

  • Rix LN, Burdett HL, Kamenos NA (2012) Irradiance-mediated dimethylsulphoniopropionate (DMSP) responses of coralline red algae. Estuar Coast Shelf Sci 96:268–272

    Article  Google Scholar 

  • Rosas-Alquicira EF, Riosmena-Rodriguez R, Cuto RP, Neto AI (2009) New additions to the Azorean algal flora, with ecological observations on rhodolith formations. Cah Biol Mar 50:1–9

    Google Scholar 

  • Sauriau PG, Curti C, Jourde J, Aubert F, Cajeri P, Lavesque N, Dubois S, Lepareur F, Gouesbier C, Sauriau F, Sauriau M, Latry L, Leguay D, Robert S, Pineau P, Geairon P (2012) Le maerl algues corallinacees marines dans les Pertuis Charentais. Annls Acad L Rochelle 10:281–300

    Google Scholar 

  • Scottish MPA Project (2013) Assessment against the MPA Selection Guidelines. Loch Sween possible nature conservation MPA. http://www.snh.gov.uk/

  • Shultze K, Janke K, Krüb A, Weidemann W (1990) The macrofauna and macroflora associated with Laminaria digitata and L. hyperborea at the island of Helgoland (German Bight, North Sea). Helgoländer Meeresun 44:39–51

    Article  Google Scholar 

  • Sneli JA (1968) The Lithothamnion community in Nord-Möre, Norway with notes on the epifauna of Desmarestia viridis (Müller). Sarsia 31:69–74

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodriguez R, Foster MS (2007) Sampling and monitoring rhodolith beds. In: Rigby R, Iken K, Shirayama Y (eds) Handbook for sampling coastal seagrasses and macroalgae community biodiversity. Kyoto University Press, Kyoto

    Google Scholar 

  • Strömfelt HFG (1886) Om algvegetationen vid Islands Kuster, pp. 1–89. Göteborg: Akademisk Afhandling

    Google Scholar 

  • Suneson S (1958) Lithothamnion calcareum vid svenska västkusten. Bot Notiser 111:197–199

    Google Scholar 

  • Teichert S, Woelkerling W, Rüggeberg A, Wisshak M, Piepenburg D, Meyerhöfer M, Form A, Büdenbender J, Freiwald A (2012) Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31′N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phys Chem Chem Phys 51:371–390

    Google Scholar 

  • Teichert S, Woelkerling W, Ruggeberg A, Wisshak M, Piepenburg D, Meyerhofer M, Form A, Freiwald A (2013) Artic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies. doi:10.1007/s10347-013-0372-2

    Google Scholar 

  • Tittley I (2002) Seaweed diversity in the North Atlantic Ocean. Arquipélago. Life Mar Sci 19A:13–25

    Google Scholar 

  • Whelan PM, Cullinane JP (1985) The algal flora of a subtidal Zostera bed in Ventry Bay, southwest Ireland. Aquat Bot 23:41–51

    Article  Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Cons 120:279–289

    Article  Google Scholar 

Download references

Acknowledgements

JHK acknowledges support from CONACyt-Mexico, SEP-Mexico, Smithsonian Institution-USA and National University of Ireland, Galway. Studies on the Iberian Peninsula were supported by the research projects CGL2006-03576/BOS (Ministerio de Educacion y Ciencia and FEDER) and PGIDIT03PXIB10301PR (Xunta de Galicia). VP acknowledges support by Xunta de Galicia (Plan Galego de Investigación, Innovación e Crecemento, Plan I2C, 2011–2015), Universidade da Coruña and Programa Nacional de Movilidad de Recursos Humanos (Spain’s Ministerio de Economía y Competitividad). JHS acknowledges support from the EU ’Mediterranean Sea Acidification under a changing climate’ project (MedSeA; grant agreement 265103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jazmin J. Hernandez-Kantun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernandez-Kantun, J.J. et al. (2017). North Atlantic Rhodolith Beds. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_10

Download citation

Publish with us

Policies and ethics