Skip to main content

Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications

  • Chapter
  • First Online:
Advances in Stem Cell Therapy

Abstract

The application of stem cell-based therapeutics in improving human health is the ultimate anticipated outcome of stem cell research. Yet there exists a recognized lag between laboratory discoveries confirming the potential of stem cells and their actual application in routine clinical care. This lag can be appreciated if we contrast the number of research articles published in the field of stem cells with the number of products used in clinical practice. For example, a search for the keyword “stem cell” found 279,213 publications on PubMed, whereas only five products, all based on hematopoietic stem cells, were approved for therapeutic use by the US Food and Drug Administration [1]. This chapter will provide an overview of emerging technologies applied to help overcome such challenges with a highlight on their potential for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosemann A. Why regenerative stem cell medicine progresses slower than expected. J Cell Biochem. 2014;115:2073–6.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Nbaheen M, Ali D, Bouslimi A, Al-Jassir F, Megges M, Prigione A, Adjaye J, Kassem M, Aldahmash A. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep. 2013;9:32–43.

    Article  CAS  Google Scholar 

  4. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441:1075–9.

    Article  CAS  PubMed  Google Scholar 

  5. Feng Y, Zhu M, Dangelmajer S, Lee YM, Wijesekera O, Castellanos CX, Denduluri A, Chaichana KL, Li Q, Zhang H, Levchenko A, Guerrero-Cazares H, Quinones-Hinojosa A. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death Dis. 2014;5:e1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13:645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F, Wang Y, Attayek PJ, Balowski J, Liu XF, Laurenza RJ. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat Cell Biol. 2015;17:340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–11.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed O, Abdellah H, Elsayed M, Abdelgawad M, Mousa NA, El-Badri N. Tissue dissociation miniaturized platform for uterine stem cell isolation and culture. In: Biomedical Engineering Conference (CIBEC), 2014 Cairo International. 2014. p. 178–80.

    Google Scholar 

  10. Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW. Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One. 2011;6:e16053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Suszynska M, Mierzejewska K, Liu R, Ratajczak J, Shin DM, Kucia M. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia. 2014;28:473–84.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Kai K, Choi DS, Iwamoto T, Nguyen YH, Wong H, Landis MD, Ueno NT, Chang J, Qin L. Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells. Proc Natl Acad Sci U S A. 2012;109:18707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhagat A, Bow H, Hou H, Tan S, Han J, Lim C. Microfluidics for cell separation. Med Biol Eng Comput. 2010;48:999–1014.

    Article  PubMed  Google Scholar 

  14. Tsutsui H, Ho C-M. Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun. 2009;36:92–103.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pruszak J, Sonntag K-C, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells. 2007;25:2257–68.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cho SH, Chen CH, Tsai FS, Godin JM, Lo Y-H. Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter ([small mu]FACS). Lab Chip. 2010;10:1567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung TD, Kim HC. Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis. 2007;28:4511–20.

    Article  CAS  PubMed  Google Scholar 

  18. Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kutter JP, Telleman P. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip. 2003;3:22–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ahn K, Kerbage C, Hunt TP, Westervelt RM, Link DR, Weitz DA. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett. 2006;88:024104.

    Article  CAS  Google Scholar 

  20. Huh D, Tkaczyk AH, Bahng JH, Chang Y, Wei H-H, Grotberg JB, Kim C-J, Kurabayashi K, Takayama S. Reversible switching of high-speed air-liquid two-phase flows using electrowetting-assisted flow-pattern change. J Am Chem Soc. 2003;125(48):14678–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wu H-W, Hsu R-C, Lin C-C, Hwang S-M, Lee G-B. An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics. 2010;4:024112.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT, Lee W, Amini H, Di Carlo D. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem. 2010;397:3249–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev. 2010;39:1203–17.

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Cui D, Liu C, Li H, Chen J. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal Chim Acta. 2007;584:237–43.

    Article  CAS  PubMed  Google Scholar 

  25. Fu L-M, Tsai C-H, Lin C-H. A high-discernment microflow cytometer with microweir structure. Electrophoresis. 2008;29:1874–80.

    Article  CAS  PubMed  Google Scholar 

  26. Ji H, Samper V, Chen Y, Heng C, Lim T, Yobas L. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices. 2008;10:251–7.

    Article  PubMed  Google Scholar 

  27. Chen X, Cui DF, Liu CC, Li H. Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B. 2008;130:216–21.

    Article  CAS  Google Scholar 

  28. Wei H, Chueh B-H, Wu H, Hall EW, Li C-W, Schirhagl R, Lin J-M, Zare RN. Particle sorting using a porous membrane in a microfluidic device. Lab Chip. 2011;11:238–45.

    Article  CAS  PubMed  Google Scholar 

  29. Beattie W, Qin X, Wang L, Ma H. Clog-free cell filtration using resettable cell traps. Lab Chip. 2014;14:2657–65.

    Article  CAS  PubMed  Google Scholar 

  30. Singh A, Suri S, Lee T, Chilton JM, Cooke MT, Chen W, Fu J, Stice SL, Lu H, McDevitt TC, Garcia AJ. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat Methods. 2013;10:438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi S, Levy O, Coelho MB, Cabral JMS, Karp JM, Karnik R. A cell rolling cytometer reveals the correlation between mesenchymal stem cell dynamic adhesion and differentiation state. Lab Chip. 2014;14:161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narasipura SD, Wojciechowski JC, Duffy BM, Liesveld JL, King MR. Purification of CD45+ hematopoietic cells directly from human bone marrow using a flow-based P-selectin-coated microtube. Am J Hematol. 2008;83:627–9.

    Article  PubMed  Google Scholar 

  33. Karnik R, Hong S, Zhang H, Mei Y, Anderson DG, Karp JM, Langer R. Nanomechanical control of cell rolling in two dimensions through surface patterning of receptors. Nano Lett. 2008;8:1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA, Sun D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 2011;11:3656–62.

    Article  CAS  PubMed  Google Scholar 

  35. Lin YH, Lee GB. Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens Bioelectron. 2008;24:572–8.

    Article  CAS  PubMed  Google Scholar 

  36. Perroud TD, Kaiser JN, Sy JC, Lane TW, Branda CS, Singh AK, Patel KD. Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces. Anal Chem. 2008;80:6365–72.

    Article  CAS  PubMed  Google Scholar 

  37. Werner M, Merenda F, Piguet J, Salathe R-P, Vogel H. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. Lab Chip. 2011;11:2432–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dholakia K, Woei Ming L, Paterson L, MacDonald MP, McDonald R, Andreev I, Mthunzi P, Brown CTA, Marchington RF, Riches AC. Optical separation of cells on potential energy landscapes: enhancement with dielectric tagging. IEEE J Select Top Quantum Electron. 2007;13:1646–54.

    Article  CAS  Google Scholar 

  39. Wu T-H, Chen Y, Park S-Y, Hong J, Teslaa T, Zhong JF, Di Carlo D, Teitell MA, Chiou P-Y. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip. 2012;12:1378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol. 2005;23:83–7.

    Article  CAS  PubMed  Google Scholar 

  41. Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tárnok A. Microfluidic impedance-based flow cytometry. Cytometry A. 2010;77A:648–66.

    Article  CAS  Google Scholar 

  42. Ding X, Li P, Lin S-CS, Stratton ZS, Nama N, Guo F, Slotcavage D, Mao X, Shi J, Costanzo F, Huang TJ. Surface acoustic wave microfluidics. Lab Chip. 2013;13:3626–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johansson L, Nikolajeff F, Johansson S, Thorslund S. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem. 2009;81:5188–96.

    Article  CAS  PubMed  Google Scholar 

  44. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA. Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip. 2010;10:789–94.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng Y-C, Tsao C-W, Chiang M-Z, Chung C-A, Chien C-C, Hu W-W, Ruaan R-C, Li C. Microfluidic platform for human placenta-derived multipotent stem cells culture and applied for enhanced neuronal differentiation. Microfluid Nanofluid. 2015;18:587–98.

    Article  CAS  Google Scholar 

  46. Ellison D, Munden A, Levchenko A. Computational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells. Mol Biosyst. 2009;5:1004–12.

    Article  CAS  PubMed  Google Scholar 

  47. Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip. 2007;7:710–9.

    Article  CAS  PubMed  Google Scholar 

  48. Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR. Versatile, fully automated, microfluidic cell culture system. Anal Chem. 2007;79:8557–63.

    Article  PubMed  CAS  Google Scholar 

  49. Hattori K, Sugiura S, Kanamori T. Microenvironment array chip for cell culture environment screening. Lab Chip. 2011;11:212–4.

    Article  CAS  PubMed  Google Scholar 

  50. Kamei K, Guo S, Yu ZT, Takahashi H, Gschweng E, Suh C, Wang X, Tang J, McLaughlin J, Witte ON, Lee KB, Tseng HR. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip. 2009;9:555–63.

    Article  CAS  PubMed  Google Scholar 

  51. Kim JY, Park H, Kwon KH, Park JY, Baek JY, Lee TS, Song HR, Park YD, Lee SH. A cell culturing system that integrates the cell loading function on a single platform and evaluation of the pulsatile pumping effect on cells. Biomed Microdevices. 2008;10:11–20.

    Article  CAS  PubMed  Google Scholar 

  52. Korin N, Bransky A, Dinnar U, Levenberg S. Periodic “flow-stop” perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdev. 2009;11:87–94.

    Article  Google Scholar 

  53. Lee JM, Kim JE, Kang E, Lee SH, Chung BG. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis. 2011;32:3133–7.

    Article  CAS  PubMed  Google Scholar 

  54. Reichen M, Veraitch FS, Szita N. Development of a multiplexed microfluidic platform for the automated cultivation of embryonic stem cells. J Lab Autom. 2013;18:519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Titmarsh D, Hidalgo A, Turner J, Wolvetang E, Cooper-White J. Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol Bioeng. 2011;108:2894–904.

    Article  CAS  PubMed  Google Scholar 

  56. Villa M, Pope S, Conover J, Fan TH. Growth of primary embryo cells in a microculture system. Biomed Microdevices. 2010;12:253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu HW, Lin XZ, Hwang SM, Lee GB. The culture and differentiation of amniotic stem cells using a microfluidic system. Biomed Microdevices. 2009;11:869–81.

    Article  PubMed  Google Scholar 

  58. Yoshimitsu R, Hattori K, Sugiura S, Kondo Y, Yamada R, Tachikawa S, Satoh T, Kurisaki A, Ohnuma K, Asashima M, Kanamori T. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol Bioeng. 2014;111:937–47.

    Article  CAS  PubMed  Google Scholar 

  59. Gottwald E, Giselbrecht S, Augspurger C, Lahni B, Dambrowsky N, Truckenmuller R, Piotter V, Gietzelt T, Wendt O, Pfleging W, Welle A, Rolletschek A, Wobus AM, Weibezahn KF. A chip-based platform for the in vitro generation of tissues in three-dimensional organization. Lab Chip. 2007;7:777–85.

    Article  CAS  PubMed  Google Scholar 

  60. Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 2007;7:302–9.

    Article  CAS  PubMed  Google Scholar 

  61. Lii J, Hsu WJ, Parsa H, Das A, Rouse R, Sia SK. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal Chem. 2008;80:3640–7.

    Article  CAS  PubMed  Google Scholar 

  62. Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G. Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods. 2009;47:81–9.

    Article  CAS  PubMed  Google Scholar 

  63. Theresa BP, Nurazhani Abdul R, Nathan RS, Zijie Y, David TC, Yong H, Yubing X, Douglas BC. Laser direct-write of single microbeads into spatially-ordered patterns. Biofabrication. 2012;4:025006.

    Article  CAS  Google Scholar 

  64. Agarwal P, Zhao S, Bielecki P, Rao W, Choi JK, Zhao Y, Yu J, Zhang W, He X. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip. 2013;13:4525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep. 2013;3:3462.

    PubMed  PubMed Central  Google Scholar 

  66. Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T, Vulto P, Schwamborn JC, Fleming RMT. Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip. 2015;15:2419–28.

    Article  CAS  PubMed  Google Scholar 

  67. Kawada J, Kimura H, Akutsu H, Sakai Y, Fujii T. Spatiotemporally controlled delivery of soluble factors for stem cell differentiation. Lab Chip. 2012;12:4508–15.

    Article  CAS  PubMed  Google Scholar 

  68. Liu Z, Xiao L, Xu B, Zhang Y, Mak AF, Li Y, Man WY, Yang M. Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics. 2012;6:24111–2411112.

    Article  PubMed  CAS  Google Scholar 

  69. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 2005;5:401–6.

    Article  CAS  PubMed  Google Scholar 

  70. Kim L, Vahey MD, Lee HY, Voldman J. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip. 2006;6:394–406.

    Article  CAS  PubMed  Google Scholar 

  71. Park JY, Hwang CM, Lee SH, Lee S-H. Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip. 2007;7:1673–80.

    Article  CAS  PubMed  Google Scholar 

  72. Fung W-T, Beyzavi A, Abgrall P, Nguyen N-T, Li H-Y. Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip. 2009;9:2591–5.

    Article  CAS  PubMed  Google Scholar 

  73. Villa-Diaz LG, Torisawa Y-S, Uchida T, Ding J, Nogueira-de-Souza NC, O’Shea KS, Takayama S, Smith GD. Microfluidic culture of single human embryonic stem cell colonies. Lab Chip. 2009;9:1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cimetta E, Cannizzaro C, James R, Biechele T, Moon RT, Elvassore N, Vunjak-Novakovic G. Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling. Lab Chip. 2010;10:3277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim C, Kreppenhofer K, Kashef J, Gradl D, Herrmann D, Schneider M, Ahrens R, Guber A, Wedlich D. Diffusion- and convection-based activation of Wnt/beta-catenin signaling in a gradient generating microfluidic chip. Lab Chip. 2012;12:5186–94.

    Article  CAS  PubMed  Google Scholar 

  76. Wadhawan N, Kalkat H, Natarajan K, Ma X, Gajjeraman S, Nandagopal S, Hao N, Li J, Zhang M, Deng J, Xiang B, Mzengeza S, Freed DH, Arora RC, Tian G, Lin F. Growth and positioning of adipose-derived stem cells in microfluidic devices. Lab Chip. 2012;12:4829–34.

    Article  CAS  PubMed  Google Scholar 

  77. Titmarsh DM, Ovchinnikov DA, Wolvetang EJ, Cooper-White JJ. Full factorial screening of human embryonic stem cell maintenance with multiplexed microbioreactor arrays. Biotechnol J. 2013;8:822–34.

    Article  CAS  PubMed  Google Scholar 

  78. Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006;27:6032–42.

    Article  CAS  PubMed  Google Scholar 

  79. Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip. 2007;7:786–94.

    Article  CAS  PubMed  Google Scholar 

  80. Torisawa Y-s, Chueh B-H, Huh D, Ramamurthy P, Roth TM, Barald KF, Takayama S. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip. 2007;7:770–6.

    Article  CAS  PubMed  Google Scholar 

  81. Hwang YS, Chung BG, Ortmann D, Hattori N, Moeller HC, Khademhosseini A. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A. 2009;106:16978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nguyen D, Sa S, Pegan JD, Rich B, Xiang G, McCloskey KE, Manilay JO, Khine M. Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies. Lab Chip. 2009;9:3338–44.

    Article  CAS  PubMed  Google Scholar 

  83. Kang E, Choi YY, Jun Y, Chung BG, Lee S-H. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip. 2010;10:2651–4.

    Article  CAS  PubMed  Google Scholar 

  84. Khoury M, Bransky A, Korin N, Konak LC, Enikolopov G, Tzchori I, Levenberg S. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomed Microdevices. 2010;12:1001–8.

    Article  CAS  PubMed  Google Scholar 

  85. Lee WG, Ortmann D, Hancock MJ, Bae H, Khademhosseini A. A hollow sphere soft lithography approach for long-term hanging drop methods. Tissue Eng Part C Methods. 2010;16:249–59.

    Article  CAS  PubMed  Google Scholar 

  86. Kim C, Lee KS, Bang JH, Kim YE, Kim M-C, Oh KW, Lee SH, Kang JY. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip. 2011;11:874–82.

    Article  CAS  PubMed  Google Scholar 

  87. Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136:473–8.

    Article  CAS  PubMed  Google Scholar 

  88. Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics. 2011;5:022207.

    Article  PubMed Central  Google Scholar 

  89. Agarwal S, Sebastian A, Forrester LM, Markx GH. Formation of embryoid bodies using dielectrophoresis. Biomicrofluidics. 2012;6:24101–111.

    Article  PubMed  Google Scholar 

  90. Jeong GS, Jun Y, Song JH, Shin SH, Lee SH. Meniscus induced self organization of multiple deep concave wells in a microchannel for embryoid bodies generation. Lab Chip. 2012;12:159–66.

    Article  CAS  PubMed  Google Scholar 

  91. Flaim CJ, Chien S, Bhatia SN. An extracellular matrix microarray for probing cellular differentiation. Nat Methods. 2005;2:119–25.

    Article  CAS  PubMed  Google Scholar 

  92. Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol. 2007;2:347–55.

    Article  CAS  PubMed  Google Scholar 

  93. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299–306.

    Article  CAS  PubMed  Google Scholar 

  94. Yang Y, Kulangara K, Sia J, Wang L, Leong KW. Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab Chip. 2011;11:1638–46.

    Article  CAS  PubMed  Google Scholar 

  95. Jeon KJ, Park SH, Shin JW, Kang YG, Hyun JS, Oh MJ, Kim SY, Shin JW. Combined effects of flow-induced shear stress and micropatterned surface morphology on neuronal differentiation of human mesenchymal stem cells. J Biosci Bioeng. 2014;117:242–7.

    Article  CAS  PubMed  Google Scholar 

  96. Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol. 2004;22:863–6.

    Article  CAS  PubMed  Google Scholar 

  97. Khademhosseini A, Ferreira L, Blumling 3rd J, Yeh J, Karp JM, Fukuda J, Langer R. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials. 2006;27:5968–77.

    Article  CAS  PubMed  Google Scholar 

  98. Song X, Kong B, Li D. A new tool for probing of cell-cell communication: human embryonic germ cells inducing apoptosis of SKOV3 ovarian cancer cells on a microfluidic chip. Biotechnol Lett. 2008;30:1537–43.

    Article  CAS  PubMed  Google Scholar 

  99. Torisawa YS, Mosadegh B, Luker GD, Morell M, O’Shea KS, Takayama S. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr Biol (Camb). 2009;1:649–54.

    Article  CAS  Google Scholar 

  100. Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater. 2010;22:2628–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tavana H, Mosadegh B, Zamankhan P, Grotberg JB, Takayama S. Microprinted feeder cells guide embryonic stem cell fate. Biotechnol Bioeng. 2011;108:2509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tumarkin E, Tzadu L, Csaszar E, Seo M, Zhang H, Lee A, Peerani R, Purpura K, Zandstra PW, Kumacheva E. High-throughput combinatorial cell co-culture using microfluidics. Integr Biol. 2011;3:653–62.

    Article  CAS  Google Scholar 

  103. Chen Q, Wu J, Zhuang Q, Lin X, Zhang J, Lin JM. Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep. 2013;3:2433.

    PubMed  PubMed Central  Google Scholar 

  104. Huang H-C, Chang Y-J, Chen W-C, Harn HIC, Tang M-J, Wu C-C. Enhancement of renal epithelial cell functions through microfluidic-based coculture with adipose-derived stem cells. Tissue Eng Part A. 2013;19:2024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hildebrandt C, Buth H, Cho S, Impidjati, Thielecke H. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J Biotechnol. 2010;148:83–90.

    Article  CAS  PubMed  Google Scholar 

  106. Bagnaninchi PO, Drummond N. Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A. 2011;108:6462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reitinger S, Wissenwasser J, Kapferer W, Heer R, Lepperdinger G. Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells. Biosens Bioelectron. 2012;34:63–9.

    Article  CAS  PubMed  Google Scholar 

  108. Stephens CL, Toda H, Palmer TD, DeMarse TB, Ormerod BK. Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp Neurol. 2012;234:20–30.

    Article  PubMed  Google Scholar 

  109. Cramer T, Chelli B, Murgia M, Barbalinardo M, Bystrenova E, de Leeuw DM, Biscarini F. Organic ultra-thin film transistors with a liquid gate for extracellular stimulation and recording of electric activity of stem cell-derived neuronal networks. Phys Chem Chem Phys. 2013;15:3897–905.

    Article  CAS  PubMed  Google Scholar 

  110. Lindstrom S, Eriksson M, Vazin T, Sandberg J, Lundeberg J, Frisen J, Andersson-Svahn H. High-density microwell chip for culture and analysis of stem cells. PLoS One. 2009;4:e6997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Valero A, Post JN, van Nieuwkasteele JW, Ter Braak PM, Kruijer W, van den Berg A. Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip. 2008;8:62–7.

    Article  CAS  PubMed  Google Scholar 

  112. Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J. Microfluidic control of cell pairing and fusion. Nat Methods. 2009;6:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13:558–69.

    Article  CAS  PubMed  Google Scholar 

  114. Ahn EH, Kim Y, An SS, Afzal J, Lee S, Kwak M, Suh K-Y, Kim D-H, Levchenko A. Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials. 2014;35:2401–10.

    Article  CAS  PubMed  Google Scholar 

  115. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  116. Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PM, Gyorke S, Guan J, Angelos MG. Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One. 2015;10:e0126338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–66. doi:10.1016/j.copbio.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  118. Wang B, Tan L, Deng D, Lu T, Zhou C, Li Z, Tang Z, Wu Z, Tang H. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles. Int J Nanomedicine. 2015;10:3417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roger M, Clavreul A, Venier-Julienne M-C, Passirani C, Sindji L, Schiller P, Montero-Menei C, Menei P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials. 2010;31:8393–401.

    Article  CAS  PubMed  Google Scholar 

  120. Duchi S, Sotgiu G, Lucarelli E, Ballestri M, Dozza B, Santi S, Guerrini A, Dambruoso P, Giannini S, Donati D. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J Control Release. 2013;168:225–37.

    Article  CAS  PubMed  Google Scholar 

  121. Jing W, Chen Y, Lu L, Hu X, Shao C, Zhang Y, Zhou X, Zhou Y, Wu L, Liu R, Fan K, Jin G. Human umbilical cord blood-derived mesenchymal stem cells producing IL15 eradicate established pancreatic tumor in syngeneic mice. Mol Cancer Ther. 2014;13:2127–37.

    Article  CAS  PubMed  Google Scholar 

  122. Bourseau-Guilmain E, Béjaud J, Griveau A, Lautram N, Hindré F, Weyland M, Benoit JP, Garcion E. Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133. Int J Pharm. 2012;423:93–101.

    Article  CAS  PubMed  Google Scholar 

  123. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 2015;9:5725–40.

    Article  CAS  PubMed  Google Scholar 

  124. Sengstock C, Diendorf J, Epple M, Schildhauer TA, Köller M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol. 2014;5:2058–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Chen G, Tian F, Zhang Y, Zhang Y, Li C, Wang Q. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater. 2014;24:2481–8.

    Article  CAS  Google Scholar 

  126. Wang G, Zeng G, Wang C, Wang H, Yang B, Guan F, Li D, Feng X. Biocompatibility of quantum dots (CdSe/ZnS) in human amniotic membrane-derived mesenchymal stem cells in vitro. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(2):227–33.

    PubMed  Google Scholar 

  127. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan C. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012;33:1238–44.

    Article  CAS  PubMed  Google Scholar 

  128. Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale. 2014;6:5799–806.

    Article  CAS  PubMed  Google Scholar 

  129. Chikkaveeraiah BV, Soldà A, Choudhary D, Maran F, Rusling JF. Ultrasensitive nanostructured immunosensor for stem and carcinoma cell pluripotency gatekeeper protein NANOG. Nanomedicine (Lond). 2012;7:957–65.

    Article  CAS  Google Scholar 

  130. Moscovici M, Bhimji A, Kelley SO. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Lab Chip. 2013;13:940–6.

    Article  CAS  PubMed  Google Scholar 

  131. Seenivasan R, Maddodi N, Setaluri V, Gunasekaran S. An electrochemical immunosensing method for detecting melanoma cells. Biosens Bioelectron. 2015;68:508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu Q, Yu H, Tan Z, Cai H, Ye W, Zhang M, Wang P. In vitro assessing the risk of drug-induced cardiotoxicity by embryonic stem cell-based biosensor. Sens Actuators B. 2011;155:214–9.

    Article  CAS  Google Scholar 

  133. Mironava T, Hadjiargyrou M, Simon M, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: adipose derived stromal cells. Nanotoxicology. 2014;8:189–201.

    Article  CAS  PubMed  Google Scholar 

  134. Brzóska K, Męczyńska-Wielgosz S, Stępkowski TM, Kruszewski M. Adaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expression. Mutagenesis. 2015;30:431–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

N.M. was awarded funding from the Science and Technology Development Fund (STDF), Egypt. The authors would like to thank Dr. Inas Fouad for her help in technical preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha Mousa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Elsayed, M.Y., Wei, Y., Mousa, N. (2017). Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications. In: El-Badri, N. (eds) Advances in Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-29149-9_13

Download citation

Publish with us

Policies and ethics