Skip to main content

Mediterranean Pine Forests: Management Effects on Carbon Stocks

  • Chapter
  • First Online:
Managing Forest Ecosystems: The Challenge of Climate Change

Abstract

In the Mediterranean area, the role of forest as carbon sinks is particularly significant since usually ecosystem services provided by forests are frequently of greater value than their direct productions. In this chapter, how carbon sequestration changes over time and with different management regimes in Mediterranean pine forests are presented. The information come from a number of sources including: (i) carbon stock estimates under different management plans using a chronosequence trial in Pinus sylvestris forests; (ii) simulations based on the process model 3-PG of the effect of different thinning regimes on Pinus pinaster biomass under a climate change scenario; (iii) a comparison of the effect of different age structures in Pinus pinea forest using the PINEA growth model which includes the biomass allocated in cones and considers the different wood uses; and finally, (iv) a model for estimating coarse woody debris.

The rotation length, thinning intensity, stand composition, as well as age structure influenced carbon stocks and carbon sequestration rates, with different results amongst species. A less intense management regime with the extension of rotation length 20 years increased carbon stocks in Scots pine forests. However, for Mediterranean maritime pine heavy thinning increased carbon sequestration when carbon fixed in removed wood was also considered. This highlights the importance of forest management, because despite unmanaged forests can show a higher amount of carbon on-site, managed stands can fixed more off-site carbon while being in a better condition in relation to climate change effects (droughts, pets or diseases, fires...). Annual carbon fixation during one rotation period in stone pine forests is larger for uneven-aged than even-aged forest structures, although the amount of removed wood of larger dimensions is greater in even-aged structure, resulting in an extension of carbon retention in wood products. Dead wood management (size, amount, density, etc.) is currently one of the most important questions to be resolved for forest management in the context of sustainability and biodiversity conservation. The models presented for coarse woody debris allow quantifying the biomass accumulated in this component, and therefore to furthering our understanding of the carbon cycle in Mediterranean pine forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez González JG, Castedo Dorado F, Ruiz González AD, López Sánchez CA, von Gadow K (2004) A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann For Sci 61:441–450

    Article  Google Scholar 

  • Andreu L, Gutiérrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Global Chang Biol 13:1–12

    Article  Google Scholar 

  • Balboa-Murias MA, odríguez-Soalleiro R R, Merino A, Alvarez-González JA (2006) Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manag 237:29–38

    Article  Google Scholar 

  • Bauhus J, Puettmann K, Messier C (2009) Silviculture for old-growth attributes. For Ecol Manag 258:525–537

    Article  Google Scholar 

  • Bogino SM, Bravo Oviedo F, Herrero de Aza C (2006) Carbon dioxide accumulation by pure and mixed woodlands of Pinus sylvestris L. and Quercus pyrenaica Willd. in Central Mountain Range (Spain). In: Oviedo FB (ed) Proceedings of the IUFRO Div. 4 international meeting “Managing Forest Ecosystems: the Challenges of Climate Change”. Ed. Cuatroelementos, Valladolid, 98 p

    Google Scholar 

  • Bravo F, Montero G (2003) High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Ann For Sci 60:11–18

    Google Scholar 

  • Bravo F, Pando V, Ordóñez C, Lizarralde I (2008) Modelling ingrowth in Mediterranean pine forests: a case study from Scots pine (Pinus sylvestris L.) and Mediterranean Maritime pine (Pinus pinaster Ait.) stands in Spain. Investigación Agraria: Sistemas y Recursos Forestales 17(3):250–260

    Google Scholar 

  • Bravo-Oviedo A, Tomé M, Río M, Montero G (2011) Calibración del modelo 3-PG para repoblaciones de pino negral sometidas a diferente tratamiento de claras. III Forest Model group meeting. Spanish Society of Forest Science, Lugo, Spain. Oral presentation, Unpublished, 4–6 May 2011

    Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11

    Article  PubMed  Google Scholar 

  • Calama R, Montero G (2007) Cone and seed production from Stone Pine (Pinus pinea L.) stands in Central Range (Spain). Eur J For Res 1256(1):23–35

    Google Scholar 

  • Calama R, Finat L, Gordo FJ, Bachiller A, Ruíz-Peinado R, Montero G (2005) Estudio comparativo de la producción de madera y piña en masas regulares e irregulares de Pinus pinea en la provincia de Valladolid. IV Congreso Forestal Español. Mesa 3. SECF y Diputación General de Aragón. Zaragoza

    Google Scholar 

  • Calama R, Sánchez-González M, Montero G (2007) Management oriented growth models for multifunctional Mediterranean forests: the case of stone pine (Pinus pinea L.). EFI Proceedings 56: 57–70

    Google Scholar 

  • Calama R, Barbeito I, Pardos M, Río M, Montero G (2008a) Adapting a model for even-aged Pinus pinea L. stands of complex multi-aged structures. For Ecol Manag 256:1390–1399

    Article  Google Scholar 

  • Calama R, Mutke S, Gordo JM, Montero G (2008b) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manag 255(3/4):660–673

    Article  Google Scholar 

  • Campbell J, Alberti G, Martin J, Law BE (2009) Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. For Ecol Manag 257:453–463

    Article  Google Scholar 

  • Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, Barrio-Anta M, Crecente-Campo F (2012) Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Ann For Sci 69:735–746

    Article  Google Scholar 

  • Christensen M, Hahn K, Mountford EP, Standova P, Rozenbergar S, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manag 210:267–282

    Article  Google Scholar 

  • D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For Ecol Manag 262(5):803–816

    Article  Google Scholar 

  • DeBell DS, Curtis RC, Harrington CA, Tappeiner JC (1997) Shaping stand development through silvicultural practices. In: Lathryn A, Kohm, Franklin JF (eds) Creating forestry for the 21st century. The science of ecosystem management. Island Press, pp 141–151

    Google Scholar 

  • Durbán M, Harezlak J, Wand MP, Carroll RJ (2005) Simple fitting of subject-specific curves for longitudinal data. Stat Med 24:1153–1167

    Article  PubMed  Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121

    Article  Google Scholar 

  • Esseen PA, Ehnström B, Ericson L, Sjöberg K (1992) Boreal forest-The focal habitats of Fennoscandinavia. In: Hansson L (ed) Ecological principles of nature conservation. Applications in temperate and boreal environments, London, pp. 252–325

    Google Scholar 

  • Fang J, Guo Z, Hu H, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Chang Biol 20:2019–2030

    Article  PubMed  Google Scholar 

  • Fernández de Uña L, Cañellas I, Gea-Izquierdo G (2015) Stand competition determines how different tree species will cope with a warming climate. PLoS ONE 10(3):e0122255

    Article  PubMed  PubMed Central  Google Scholar 

  • Finat L, Campana V, Seseña A (2000) La ordenación por entresaca en las masas de piñonero de la provincia de Valladolid. In: I Simposio del pino piñonero (Pinus pinea L.), Valladolid. Junta de Castilla y León, pp 147–157

    Google Scholar 

  • Fontes L, Bontemps J-D, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. For Syst 19(SI):8–29

    Google Scholar 

  • Gracia CA, Burriel JA, Mata T, Vayreda J (2000) Inventari Ecológic i Forestal de Catalunya. Centre de Recerca Ecológica i Aplicacions Forestals

    Google Scholar 

  • Hamilton GJ (1981) The effects of highest intensity thinning on yield. Forestry 54(1)

    Google Scholar 

  • Hansen AJ, Spies TA, Swanson FJ, Ohmann JL (1991) Conserving biodiversity in managed forests. Lessons from natural forests. BioScience 41:292–382

    Article  Google Scholar 

  • Harmon ME, Hua C (1991) Coarse woody debris in two oldgrowth ecosystems. Comparing a deciduous forest in China and a conifer forests in Oregon. BioScience 41:604–610

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Hart SC (1999) Long-term decomposition of forest detritus in a Mediterranean type climate. In: Abstract presentations book of the Blodgett Forest Symposium, Center for Forestry, Berkeley, California, USA

    Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CABI Publishing, Wallingford, pp. 271–293

    Google Scholar 

  • Hunter ML Jr (1990) Wildlife, forest, and forestry: Principles for managing forests for biological diversity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ibañez JJ, Vayreda J, Gracia C (2002) Metodología complementaria al Inventario Forestal Nacional en Catalunya. In: Bravo F, Río M, Peso C (eds) El Inventario Forestal Nacional: Elemento clave para la gestión forestal sostenible. Fundación General de la Universidad de Valladolid, pp. 67–77

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jordan L, Clark A III, Schimleck LR, Hall DB, Daniels RF (2008) Regional variation in wood specific gravity of planted loblolly pine in the United States. Can J For Res 38:698–710

    Article  Google Scholar 

  • Jurgensen M, Tarpey R, Pickens J, Kolka R, Palik B (2012) Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci Soc Am J 76

    Google Scholar 

  • Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol 7:205–219

    Article  CAS  Google Scholar 

  • Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-Fir forests? Ecol Monogr 75:103–118

    Article  Google Scholar 

  • Kimmins H, Blanco JA, Seely B, Welham C, Scoullar K (2010) Forecasting forest futures. A hybrid modelling approach to the assessment of sustainability of forest ecosystems and their values. Earthscan Ltd, London 281 pp

    Google Scholar 

  • Kolari P, Pumpanen J, Rannik U, Ilvesniemi H, Hari P, Berninger F (2004) Carbon balance of different aged Scots pine forests in Southern Finland. Glob Chang Biol 10:1106–1119

    Article  Google Scholar 

  • Landsberg J, Sands P (2011) Physiological ecology of forest production, Principles, processess and models, 1st edn. Elsevier Inc., London/Amsterdam/Burlington/San Diego, 331 p

    Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95(3):209–228

    Article  Google Scholar 

  • Linares JC, Delgado-Huertas A, Camarero JJ, Merino J, Carreira JA (2009) Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161:611–624

    Article  PubMed  Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Mäkipää R, Karjalainen T (2004) Which rotation length is favourable to carbon sequestration? Can J For Res 31:2004–2013

    Article  Google Scholar 

  • MAGRAMA (2013) Cambio climatic: Bases físicas. Guía resumida del quinto informe de evalaución del IPCC. Grupo de Trabajo I. Ministerio de Agricultura, Alimentación y Medio Ambiente, Fundación Biodiversidad y Oficina Española de Cambio Climático, Madrid, 44 p

    Google Scholar 

  • Martín-Benito D, Río M, Cañellas I (2010a) Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann For Sci 67:401

    Article  Google Scholar 

  • Martín-Benito D, Río M, Heinrich H, Helle G, Cañellas I (2010b) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259:967–975

    Article  Google Scholar 

  • McComn W, Lindenmayer D (1999) Dying, dead, and down trees. In: Malcon L, Hunter JR (eds) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp. 335–372

    Chapter  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96

    Article  Google Scholar 

  • Montero G, Serrada R (2013) La situación de los bosques y el sector forestal en España – ISFE 2013. Edit. Sociedad Española de Ciencias Forestales. Lourizán (Pontevedra)

    Google Scholar 

  • Montero G, Cañadas N, Yagüe S, Bachiller A, Calama R, Garriga E, Cañellas I (2003) Aportaciones al conocimiento de las masas de Pinus pinea L. en los Montes de Hoyo de Pinares (Ávila – España). Revista Montes 73:30–40

    Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de Biomasa y fijación de CO2 por los bosques españoles. Monografías INIA: Serie Forestal, n°13: 270 pp

    Google Scholar 

  • Montes F, Cañellas I (2006) Modelling coarse woody debris dynamics in even-aged Scots pine forests. For Ecol Manag 221:220–232

    Article  Google Scholar 

  • Moreno-Fernández D, Díaz-Pinés E, Barbeito I, Sánchez-González M, Montes F, Rubio A, Cañellas I (2015) Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For Ecol Manag 348:186–195

    Article  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866

    Article  Google Scholar 

  • Ninyerola M, Pons X, Rour JM (2005) Atlas climático digital de la Península Ibérica, Metodología y aplicaciones en bioclimatología o geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Oria de Rueda JA, Díez J, Rodríguez M (1996) Guía de las plantas silvestres de Palencia. Ed. Cálamo, Palencia, 335 pp

    Google Scholar 

  • Pohjola J, Valsta L (2006) Carbon credits and management of Scots pine and Norway spruce stands in Finland. Forest Policy Econ 9(7):789–798

    Article  Google Scholar 

  • Powers MD, Kolka RK, Bradford JB, Palik BJ, Fraver S, Jurgensen MF (2012) Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands. Ecol Appl 22:1297–1307

    Article  PubMed  Google Scholar 

  • Prestzsch H (2002) Grundlagen der Waldwachstumsforschung. Parey Verlag, München

    Google Scholar 

  • Pretzsch H, Biber P, Schutze G, Uhl E, Rotzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:1–10

    Article  Google Scholar 

  • Río M, Calama R, Montes F, Montero G (2003) Influence of competition and structural diversity on basal area growth in uneven-aged stands of stone pine (Pinus pinea L.) in Spain. In: Uneven-aged forest management: Alternative forms, practices and constraints. IUFRO- Congress. Helsinki (Finlandia), June 2003

    Google Scholar 

  • Río M, Calama R, Cañellas I, Roig I, Montero G (2008) Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 65:308–398

    Article  Google Scholar 

  • Río M, Rodríguez-Alonso J, Bravo-Oviedo A, Ruiz-Peinado R, Cañellas I, Gutiérrez E (2014) Aleppo pine vulnerability to climate stress is independent of site productivity of forest stands in southeastern Spain. Trees 28(4):1209–1224

    Article  Google Scholar 

  • Roig S, Río M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For Ecol Manag 206:179–190

    Article  Google Scholar 

  • Ruíz-Peinado R, Río M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20(1):176–188

    Google Scholar 

  • Ruiz-Peinado R, Montero G, Río M (2012) Biomass models to estimate carbon stocks for hardwood tree species. For Syst 21:42–52

    Google Scholar 

  • Ruíz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, Río M (2013) Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132:253–262

    Article  Google Scholar 

  • Ruíz-Peinado R, Bravo-Oviedo A, Montero G, Río M (2014) Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-014-9585-0

    Google Scholar 

  • Sands PJ (2004) Adaptation of 3PG to novel species: guidelines for data collection and parameter assignment. Hobart, Australia

    Google Scholar 

  • SAS, Sas Institute Inc. (2001) SAS/STATTM user’s guide. Relase 8.2, Cary, NC, USA

    Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forest of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Article  Google Scholar 

  • Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. For Sci 43:424–434

    Google Scholar 

  • Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225

    Article  Google Scholar 

  • Smith DM, Larsen BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New York, 537 p

    Google Scholar 

  • Sollins P (1982) Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington. Can J For Res 12:18–28

    Article  Google Scholar 

  • Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207

    Article  Google Scholar 

  • Spies TA, Franklin JF, Thomas TB (1988) Coarse woody debris in douglas-fir forests of western Oregon and Washington. Ecology 69:1689–1702

    Article  Google Scholar 

  • Stephens SL, Moghaddas JJ (2005) Fuel treatment effects on snags and coarse woody debris in a Sierra Nevada mixed conifer forest. For Ecol Manag 214:53–64

    Article  Google Scholar 

  • Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA (2009) Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manag 257:1004–1013

    Article  Google Scholar 

  • Vayreda J, Martínez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041

    Article  Google Scholar 

  • Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? For Ecol Manag 309:4–18

    Article  Google Scholar 

  • Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC et al (2011) The representative concentration pathways: an overview. Clim Chang 109(1–2):5–31

    Article  Google Scholar 

  • Wagner CE (1968) The line-intersect method in forest fuel sampling. For Sci 14:20–26

    Google Scholar 

  • Warren WG, Olsen PF (1964) A line-intersect technique for assessing logging waste. For Sci 10:267–276

    Google Scholar 

  • Woldendorp G, Keenan RJ, Barry S, Spencer RD (2004) Analysis of samplig methods for coarse woody debris. For Ecol Manag 198:133–148

    Article  Google Scholar 

  • Woodall CW, Heath LS, Smith JE (2008) National inventories of down and dead woody material forest carbon stocks in the United States: challenges and opportunities. For Ecol Manag 256:221–228

    Article  Google Scholar 

  • Woollons RC (1998) Even-aged stand mortality estimation through a two-step regression process. For Ecol Manag 105:189–195

    Article  Google Scholar 

  • Wright L (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenergy 30:706–714

    Article  Google Scholar 

  • Zhang S, Amateis RL, Burkhart HE (1997) Constraining individual tree diameter increment and survival models for loblolly pine plantations. For Sci 43:414–423

    Google Scholar 

Download references

Acknowledgments

This work has been funded through the following research projects: AGL-2010-15521; AGL2011-29701-C02-01; AGL2011-29701-C02-02; AGL2010-21153-C02; AGL2013-46028R; AT2013-004; RTA-2013-00011-C2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miren del Río .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

del Río, M. et al. (2017). Mediterranean Pine Forests: Management Effects on Carbon Stocks. In: Bravo, F., LeMay, V., Jandl, R. (eds) Managing Forest Ecosystems: The Challenge of Climate Change. Managing Forest Ecosystems, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-28250-3_15

Download citation

Publish with us

Policies and ethics