Skip to main content

A Personal Perspective on the Development of Our Understanding of the Myogenic Control Mechanisms of Gut Motor Function

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

Myogenic control mechanisms play a role in all motor activities of the gut. Myogenic control systems are defined here as control systems that are intrinsic to the smooth muscle cells and/or interstitial cells of Cajal (ICC) and that can operate without an essential contribution of the intrinsic (ENS) and extrinsic nervous systems. In vivo however, the ENS and the myogenic control systems always work in cooperation. Although myogenic control plays a role in every gut organ, this review focuses on the peristaltic and segmentation activity of the small intestine. It provides some historical perspectives and some discussion on the development of our understanding of the cooperative nature of the myogenic and neurogenic control mechanisms. It highlights how some influential papers inadvertently provided hindrance to full understanding, it discusses how the guinea pig model has hampered acceptance of myogenic control systems and it provides some background into the genesis of our understanding of control mechanisms involving ICC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez WC (1914) Functional variations in contractions of different parts of the small intestine. Am J Physiol 35:177–193

    Google Scholar 

  • Alvarez WC (1922) The myogenic nature of the contractions. Am J Physiol 59:421–430

    Google Scholar 

  • Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon WB (1902) The movements of the intestines studied by means of the Röntgen rays. J Med Res 7:72–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Code CF, Szurszewski J, Keith AK, Smith IB (1968) A concept of control of gastrointestinal motility. In: Code CF (ed) Handbook of physiology: alimentary canal. American Physiological Society, Washington, DC, pp 2881–2896

    Google Scholar 

  • Costa M (2006) All together now: from pacemakers to gastric peristalsis. J Physiol 571:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa M, Brookes SH (2008) Architecture of enteric neural circuits involved in intestinal motility. Eur Rev Med Pharmacol Sci 12(Suppl 1):3–19

    PubMed  Google Scholar 

  • Der-Silaphet T, Malysz J, Hagel S, Arsenault LA, Huizinga JD (1998) Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114:724–736

    Article  CAS  PubMed  Google Scholar 

  • Diamant NE, Bortoff A (1969) Nature of the intestinal slow-wave frequency gradient. Am J Physiol 216:301–307

    CAS  PubMed  Google Scholar 

  • Donnelly G, Jackson TD, Ambrous K, Ye J, Safdar A, Farraway L, Huizinga JD (2001) The myogenic component in distention-induced peristalsis in the guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 280:G491–G500

    CAS  PubMed  Google Scholar 

  • Ellis M, Chambers JD, Gwynne RM, Bornstein JC (2013) Serotonin (5-HT) and cholecystokinin (CCK) mediate nutrient induced segmentation in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 304:G749–G761

    Article  CAS  PubMed  Google Scholar 

  • Ferens D, Baell J, Lessene G, Smith JE, Furness JB (2007) Effects of modulators of Ca(2+)-activated, intermediate-conductance potassium channels on motility of the rat small intestine, in vivo. Neurogastroenterol Motil 19:383–389

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford, England

    Google Scholar 

  • Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G (2009) Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296:G1370–G1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwynne RM, Bornstein JC (2007) Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292:G1162–G1172

    Article  CAS  PubMed  Google Scholar 

  • Gwynne RM, Thomas EA, Goh SM, Sjovall H, Bornstein JC (2004) Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J Physiol 556:557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall KE, El-Sharkawy TY, Diamant NE (1982) Vagal control of migrating motor complex in the dog. Am J Physiol 243:G276–G284

    CAS  PubMed  Google Scholar 

  • Huizinga JD, Chen JH (2014) The myogenic and neurogenic components of the rhythmic segmentation motor patterns of the intestine. Front Neurosci 8:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  CAS  PubMed  Google Scholar 

  • Huizinga JD, Berezin I, Sircar K, Hewlett B, Donnelly G, Bercik P, Ross C, Algoufi T, Fitzgerald P, Der T, Riddell RH, Collins SM, Jacobson K (2001) Development of interstitial cells of Cajal in a full-term infant without an enteric nervous system. Gastroenterology 120:561–567

    Article  CAS  PubMed  Google Scholar 

  • Huizinga JD, Chen JH, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:3326

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh SD, Sanders KM, Ward SM (1998) Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 513:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komuro T, Zhou DS (1996) Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J Auton Nerv Syst 61:169–174

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    CAS  PubMed  Google Scholar 

  • Pawelka AJ, Huizinga JD (2015) Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 308:G427–33

    Google Scholar 

  • Perdue MH, Masson S, Wershil BK, Galli SJ (1991) Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation. J Clin Invest 87:687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith TK (1989) Spontaneous junction potentials and slow waves in the circular muscle of isolated segments of guinea-pig ileum. J Auton Nerv Syst 27:147–154

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Prosser CL, DeVos W (1986) Waxing and waning of slow waves in intestinal musculature. Am J Physiol 250:G28–G34

    CAS  PubMed  Google Scholar 

  • Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4:848–851

    Article  CAS  PubMed  Google Scholar 

  • Tort AB, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase–amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104:1195–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis. Translation of the article “Physiologische und pharmakologische Versuche uber die Dunndarmperistaltik”, Arch. Exp. Pathol. Pharmakol. 81, 55–129, 1917. Naunyn Schmiedebergs Arch Pharmacol 373:101–133

    Google Scholar 

  • Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480:91–97

    Google Scholar 

  • Wright GW, Parsons SP, Huizinga JD (2012) Ca(2+) sensitivity of the maxi chloride channel in interstitial cells of Cajal. Neurogastroenterol Motil 24:e221–e234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

 Research support has been received throughout these years from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. Huizinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huizinga, J.D. (2016). A Personal Perspective on the Development of Our Understanding of the Myogenic Control Mechanisms of Gut Motor Function. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_2

Download citation

Publish with us

Policies and ethics