Skip to main content

Cognitive Science and the Connection Between Physics and Mathematics

  • Chapter
  • First Online:
Trick or Truth?

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The human mind is endowed with innate primordial perceptions such as space, distance, motion, change, flow of time, matter. The field of cognitive science argues that the abstract concepts of mathematics are not Platonic, but are built in the brain from these primordial perceptions, using what are known as conceptual metaphors. Known cognitive mechanisms give rise to the extremely precise and logical language of mathematics. Thus all of the vastness of mathematics, with its beautiful theorems, is human mathematics. It resides in the mind, and is not ‘out there’. Physics is an experimental science in which results of experiments are described in terms of concrete concepts—these concepts are also built from our primordial perceptions. The goal of theoretical physics is to describe the experimentally observed regularity of the physical world in an unambiguous, precise and logical manner. To do so, the brain resorts to the well-defined abstract concepts which the mind has metaphored from our primordial perceptions. Since both the concrete and the abstract are derived from the primordial, the connection between physics and mathematics is not mysterious, but natural. This connection is established in the human brain, where a small subset of the vast human mathematics is cognitively fitted to describe the regularity of the universe. Theoretical physics should be thought of as a branch of mathematics, whose axioms are motivated by observations of the physical world. We use the example of quantum theory to demonstrate the all too human nature of the physics-mathematics connection: it is at times frail, and imperfect. Our resistance to take this imperfection sufficiently seriously (since no known experiment violates quantum theory) shows the fundamental importance of experiments in physics. This is unlike in mathematics, the goal there being to search for logical and elegant relations amongst abstract concepts which the mind creates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Courant and H. Robbins, What is Mathematics? (Oxford University Press, 1996).

    Google Scholar 

  2. A. Koestler, The Sleepwalkers: A History of Man’s Changing Vision of the Universe (Penguin Books, 1990).

    Google Scholar 

  3. C. W. Misner, K. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, 1973).

    Google Scholar 

  4. D. Ruelle, The Mathematician’s Brain (Princeton University Press, 2007).

    Google Scholar 

  5. K. Appel and H. Wolfgang, Illinois Journal of Mathematics 21, 429 (1977).

    MathSciNet  MATH  Google Scholar 

  6. G. Faltings, Inventiones Mathematicae 73, 349 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. V. Jones, Bull. Amer. Math. Soc. (N.S.) 12, 103 (1985).

    Google Scholar 

  8. E. Witten, Commun. Math. Phys. 121, 351 (1989).

    Article  ADS  MATH  Google Scholar 

  9. S. Dehaene, The Number Sense: How the Mind Creates Mathematics (Oxford University Press, 2011).

    Google Scholar 

  10. S. E. Antell and D. P. Keating, Child Development 54, 695 (1983).

    Article  Google Scholar 

  11. K. Wynn, Nature 358, 749 (1992).

    Article  ADS  Google Scholar 

  12. R. Bijeljac-Babic, J. Bertoncini, and J. Mehler, Developmental Psychology 29, 711 (1991).

    Article  Google Scholar 

  13. F. Mechner and L. Gueverekian, Journal of the Experimental Analysis of Behavior 5, 463 (1962).

    Article  Google Scholar 

  14. R. M. Church and W. H. Meck, Animal Cognition, edited by T. G. Bever and H. S. Terrace (Hillsdale, N.J.:Erlbaum, 1984).

    Google Scholar 

  15. M. D. Hauser, P. MacNeilage, and M. Ware, Proc. Nat. Aca. Sci. USA 93, 1514 (1996).

    Article  ADS  Google Scholar 

  16. G. Lakoff and R. E. Nunez, Where Mathematics Comes From? (Basic Books, 2000).

    Google Scholar 

  17. S. Narayanan, Embodiment in language understanding: sensory motor representations for metaphoric reasoning about event descriptions, Ph.D. thesis, UC Berkeley (1997).

    Google Scholar 

  18. C. Johnson, Metaphor vs. conflation in the acquisition of polysemy: The case of SEE, edited by M. K. Hiraga, C. Sinha, and S. Wilcox (Amsterdam: John Benjamins, 1997).

    Google Scholar 

  19. T. P. Singh, “Youtube video: Does nature play dice?” (2014 https://www.youtube.com/watch?v=wSiDsMKS_uU).

  20. J. S. Bell, Physics World, 8, 33 (1990).

    Article  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, 1965).

    Google Scholar 

  22. A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013).

    Article  ADS  Google Scholar 

  23. S. Bera, B. Motwani, T. P. Singh, and H. Ulbricht, Scientific Reports 5, 7664 (2015).

    Article  ADS  Google Scholar 

  24. T. P. Singh, Bulg. J. Phys. 33, 217 (2006).

    MathSciNet  MATH  Google Scholar 

  25. A. Connes, Noncommutative Geometry (Academic Press Inc, 1995).

    Google Scholar 

  26. K. Lochan and T. P. Singh, Phys. Lett. A 375, 3747 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. L. Adler, Quantum theory as an emergent phenomenon (Cambridge University Press, Cambridge, 2004) pp. xii+225.

    Google Scholar 

  28. K. Lochan, S. Satin, and T. P. Singh, Found. Phys. 42, 1556 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. T. P. Singh, in The Forgotten Present, edited by T. Filk and A. von Muller (arXiv:1210.8110) (Springer: Berlin-Heidelberg, 2013).

  30. A. Connes, arXiv:math/0011193 (2000).

  31. A. H. Chamseddine and A. Connes, Fortsch. Phys. 58, 553 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Gupta Mujumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mujumdar, A.G., Singh, T. (2016). Cognitive Science and the Connection Between Physics and Mathematics. In: Aguirre, A., Foster, B., Merali, Z. (eds) Trick or Truth?. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-27495-9_18

Download citation

Publish with us

Policies and ethics