Skip to main content

Functional Diversity in Tropical High Elevation Giant Rosettes

  • Chapter
  • First Online:
Tropical Tree Physiology

Part of the book series: Tree Physiology ((TREE,volume 6))

Abstract

Strong daily temperature variations, seasonal soil water availability and high air evaporative demands play an essential role in adaptive responses of tropical high elevation mountain plants. Giant rosettes are a perfect example of successful adaptations to these conditions, representing an important life-form of high elevation tropical mountains in the Andes, Hawaii and Africa, a well-known case of convergent evolution. Adaptive radiation resulted in a substantially large number of giant rosette species in the ‘paramos’, a local name given for tropical alpine Andean vegetation. Plant functional responses: plant water relations, gas exchange characteristics and freezing resistance in giant rosettes are described in order to understand their responses to extreme environmental conditions characteristic of high elevation tropical habitats. Giant rosettes have a large capacitance (water-storage pith) and strong stomatal control to cope with periods of water deficit, resulting in the maintenance of high leaf water potentials on a daily and seasonal basis. Maximum net CO2 assimilation rates are variable among species (3–10 μmol m−2 s−1), all showing photosynthetic decreases from wet to dry seasons. Giant rosettes rely on permanent supercooling of the leaves together with insulating structures protecting stems and apical buds to cope with freezing damage. Even though the general aspect and plant morphology of giant rosettes is similar across all high elevation tropical regions, responses to similar selective pressures resulted in different physiological characteristics in freezing resistance mechanisms, e.g. tolerance versus avoidance, and thermal balance of the rosette. Giant rosette responses under changing global environments are also discussed. The emphasis in the description of physiological and morphological characteristics will be on South American giant rosettes due to the large number of studies and the large number of species occurring in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonelli A (2009) Have giant lobelias evolved several times independently? Life form shits and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC Biol 7:82

    Google Scholar 

  • Azócar C (2006) Relación entre anatomía foliar, forma de vida y mecanismos de Resistencia a temperaturas congelantes en diferentes especies en el Páramo de Piedras Blancas. Masters Thesis. Universidad de Los Andes, Mérida, Venezuela

    Google Scholar 

  • Azócar A, Rada F (2006) Ecofisiología de Plantas de Páramo. Publicaciones ICAE, Mérida, Venezuela, 182 pp

    Google Scholar 

  • Azócar A, Rada F, Goldstein G (1988) Freezing tolerance in Draba chionophylla, a ‘miniature’ caulescent rosette species. Oecologia 75:156–160

    Article  Google Scholar 

  • Azócar A, Rada F, García-Núñez C (2000) Aspectos ecofisiológicos para la conservación de ecosistemas tropicales contrastantes. Boletín de la Sociedad Mexicana de Botánica 65:89–94

    Google Scholar 

  • Baruch Z, Smith AP (1979) Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae), in the Venezuelan Andes. Oecologia 38:71–82

    Article  Google Scholar 

  • Bates BC, Kundzewics ZW, Wu S, Palutikof J (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC Secretariat, Geneva

    Google Scholar 

  • Beck E (1994) Cold tolerance in tropical alpine plants. In: Rundel PW, Meinzer FC, Smith AP (eds) Tropical alpine environments: plant form and function. Cambridge University Press, Cambridge, pp 77–110

    Chapter  Google Scholar 

  • Beck E, Senser M, Scheibe R, Steiger H, Pongratz P (1982) Frost avoidance and freezing tolerance in afroalpine “giant rosette” plants. Plant Cell Environ 5:215–222

    Google Scholar 

  • Beck E, Schulze ED, Senser M, Scheibe R (1984) Equilibrium freezing of leaf water and extracellular ice formation in afroalpine “giant rosette” plants. Planta 162:276–282

    Article  CAS  PubMed  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: A review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Berry PE, Beaujon S, Calvo R (1988) Hybridization in the evolution of the frailejones (Espeletia, Asteraceae). Ecotropicos 1:11–24

    Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Bussmann RW (2006) Vegetation zonation and nomenclature of African mountains—an overview. Lyonia 11:41–66

    Google Scholar 

  • Buytaert W, Vuille M, Dewulf A, Urrutia R, Karmalkar A, Celleri R (2010) Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol Earth Syst Sci 14:1247–1258

    Article  Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33

    Article  Google Scholar 

  • Carlquist S (1974) Island biology. Columbia University Press, New York

    Book  Google Scholar 

  • Castaño-Uribe C (2002) Colombia alto andina y la significancia ambiental del bioma páramo en el contexto de los Andes tropicales: Una aproximación a los efectos futuros por el cambio climático global (Global climatic tensor). En: C. Castaño-Uribe (ed), Páramos y Ecosistemas Alto Andinos de Colombia en Condición Hotspot & Global Climatic Tensor. IDEAM, pp 24–70

    Google Scholar 

  • Cavieres L, Rada F, Azócar A, García-Núñez C, Cabrera HM (2000). Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes. Acta Oecol 21:203–211

    Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15

    Article  Google Scholar 

  • Cuatrecasas J (1976) A new subtribe in the Heliantheae (Compositae) Espeletiinae. Phytologia 35:43–61

    Article  Google Scholar 

  • Cuatrecasas J, Vuilleumier F, Monasterio M (1986) Speciation and radiation of the Espeletiinae in the Andes. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 267–303

    Google Scholar 

  • Cuesta F, Becerra MT (2012) Biodiversidad y cambio climático en los Andes: Importancia del monitoreo y el trabajo regional. Revista virtual REDESMA 6:19–27

    Google Scholar 

  • Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  • Dulhoste R (2010) Estrés hídrico y térmico en especies leñosas de la zona de transición selva húmeda-páramo. Doctor’s thesis, Universidad de Los Andes, Mérida, Venezuela

    Google Scholar 

  • Ehleringer J (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodríguez E, Healey P, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 113–132

    Google Scholar 

  • Estrada C, Goldstein G, Monasterio M (1991) Leaf dynamics and water relations of Espeletia spicata and E. timotensis, two giant rosettes of the Desert Paramoin the tropical Andes. Acta Oecologica 12:603–616

    Google Scholar 

  • Estrada C, Monasterio M (1988) Ecología poblacional de una roseta gigante, Espeletia spicata Sch Bip (Compositae) del páramo desértico. Ecotropicos 1:25–39

    Google Scholar 

  • Garay I (1981) Le peuplement de microarthropodes dans la litière sur pied de Espeletia timotensis et E. lutescens. Revue Ecologie et Biologie du Sol 18:209–219

    Google Scholar 

  • García-Varela S (2000) Mecanismos de resistencia a temperaturas congelantes en plantas jóvenes de Espeletia spicata y Espeletia timotensis. Undergraduate thesis, Universidad de Los Andes, Mérida, Venezuela

    Google Scholar 

  • García-Varela S, Rada F (2003) Freezing avoidance mechanisms in juveniles of giant rosette plants of the genus Espeletia. Acta Oecol 24:165–167

    Article  Google Scholar 

  • Goldstein G, Meinzer FC (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant Cell Environ 6:649–656

    Google Scholar 

  • Goldstein G, Meinzer FC, Monasterio M (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant Cell Environ 7:179–186

    Google Scholar 

  • Goldstein G, Meinzer FC, Monasterio M (1985a) Physiological and mechanical factors in relation to size-dependent mortality in Andean giant rosette species. Acta Oecol Oecol Plant 6:263–275

    Google Scholar 

  • Goldstein G, Rada F, Azócar A (1985b) Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species. Oecologia (Berlin) 68:147–152

    Article  Google Scholar 

  • Goldstein G, Rada F, Canales MO, Zabala O (1989) Leaf gas exchange of two giant caulescente rosete species. Oecologia Plant 10:359–370

    Google Scholar 

  • Goldstein G, Drake DR, Melcher P, Giambelluca TW, Heraux J (1996) Photosynthetic gas exchange and temperature-induced damage in seedlings of the tropical alpine species Argyroxiphium sandwicense. Oecologia 106:298–307

    Article  Google Scholar 

  • Gosling WD, Bunting MJ (2007) A role for palaeoecology in anticipating future change in mountain regions? Palaeogeogr Palaeoclimatol Palaeoecol 259:1–5

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448–448

    Google Scholar 

  • Grabherr G, Pauli H, Gottfried M (2010) A worldwide observation of effects of climate change on mountain ecosystems. In: Borsdorf A, Grabherr G, Heinrich K, Scott B, Stötter J (eds) Challenges for mountain regions-tackling complexity. Böhlau Verlag, Vienna

    Google Scholar 

  • Guariguata MR, Azócar A (1988) Seed bank dynamics and germination ecology in Espeletia timotensis (Compositae), an Andean giant rosette. Biotropica 20:54–59

    Article  Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeographica Suecica 49:1–44

    Google Scholar 

  • IPCC (2007) Climate change 2007—impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Körner Ch (2003) Alpine plant life, functional plant ecology of high mountain ecosystems. Springer, Berlin, 344 pp

    Google Scholar 

  • Larcher W (1975) Pflanzenokologische Beobachtungen in der paramostufe der Venezolanischen Anden. Anz Math-Naturw Kl Oest Akad Wissensch 112:194–213

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-aufnahme und temperaturresistenz der blätter von gebirgspflanzen in vegetationsaktiven Zustand. Oecola Plant 11:361–374

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 1. Chilling, freezing and high temperature stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Lipp CC, Goldstein G, Meinzer FC, Niemezura W (1994) Freezing tolerance and avoidance in high elevation Hawaiian plants. Plant Cell Environ 17:1035–1044

    Article  Google Scholar 

  • Luteyn JL (1992) Páramos: why study them? In: Balslev H, Luteyn JL (eds) Páramo, an Andean ecosystem under human influence. Academic Press, pp 1–14

    Google Scholar 

  • Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution and botanical literature. Memoirs of the New York Botanical Garden, vol 84

    Google Scholar 

  • Lüttge U, Fetene M, Liebig M, Rascher U, Beck E (2001) Ecophysiology of niche occupation by two giant rosette plants, Lobelia gibberoa Hemsl and Solanecio gigas (Vatke) C. Jeffrey, in an afromontane forest valley. Ann Bot 88:267–278

    Article  Google Scholar 

  • Márquez EJ, Rada F, Fariñas MR (2006) Freezing tolerance in grasses along an altitudinal gradient in the Venezuelan Andes. Oecologia 150:393–397

    Article  PubMed  Google Scholar 

  • Meinzer FC, Goldstein G (1985) Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis. Ecology 66:512–520

    Article  Google Scholar 

  • Meinzer FC, Goldstein G (1986) Adaptations for water and termal balance in Andean giant rosette plants. In: Givnish TH (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 381–411

    Google Scholar 

  • Meinzer FC, Goldstein G, Rundel PH (1985) Morphological changes along an altitude gradient and their consequences for an Andean giant rosette. Oecologia 65:278–283

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Rada F (1994) Paramo microclimate and leaf termal balance of Andean giant rosette plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments: plant form and function. Cambridge University Press, pp 45–59

    Google Scholar 

  • Melcher PJ, Goldstein G, Meinzer FC, Minyard B, Giambelluca TW, Loope LL (1994) Determinants of termal balance in the Hawaiian giant rosette plant, Argyroxiphium sandwicense. Oecologia 98:412–418

    Article  Google Scholar 

  • Monasterio M (1979) El páramo desértico em el altiandino de Venezuela. In: Salgado-Labouriau ML (ed) El Medio Ambiente Páramo. UNESCO-IVIC, Caracas, Venezuela, pp 150–159

    Google Scholar 

  • Monasterio M (1980) Las formaciones vegetales de los páramos de Venezuela. In: Monasterio M (ed) Estudios Ecologicos en los Páramos Andinos. Universidad de Los Andes, Mérida, Venezuela, pp 93–158

    Google Scholar 

  • Monasterio M, Sarmiento L (1991) Adaptive radiation of Espeletia in the cold Andean tropics. Trends Ecol Evol 6:387–391

    Article  CAS  PubMed  Google Scholar 

  • Monasterio M, Vuilleumier F (1986) Introduction: high tropical mountain biota of the world. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 3–7

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Navarro A (2013) Relaciones hídricas en Ruilopezia atropurpurea (A.C. Sm.) Cuatrec. a diferentes condiciones microambientales en el Páramo de San José, Estado Mérida. Master’s thesis, Universidad de Los Andes, Mérida, Venezuela

    Google Scholar 

  • Orozco A (1986) Economía hídrica en rosetas juveniles de Espeletia en el páramo desértico. Masters thesis, Universidad de Los Andes, Mérida, Venezuela

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–390

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fernández Calzado R, Ghosn D, Holte JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  CAS  PubMed  Google Scholar 

  • Pérez FL (1984) Striated soil in an Andean páramo of Venezuela: its origin and orientation. Arct Alp Res 16:277–289

    Article  Google Scholar 

  • Pérez FL (1989) Some effects of giant Andean stem-rosettes on ground microclimate, and their ecological significance. Int J Biometeorol 33:131–135

    Article  Google Scholar 

  • Rada F, Azócar A, Rojas-Altuve A (2012) Water relations and gas exchange in Coespeletia moritziana (Sch. Bip) Cuatrec., a giant rosette species of the high tropical Andes. Photosynthetica 50:429–436

    Article  CAS  Google Scholar 

  • Rada F, Azócar A, Briceño B, González J (1998) Leaf gas Exchange in Espeletia schultzii Wedd, a giant caulescent rosette along an altitudinal gradient in the Venezuelan Andes. Acta Oecol 19:73–79

    Article  Google Scholar 

  • Rada F, Goldstein G, Azócar A, Meinzer F (1985a) Freezing avoidance in andean giant rosette plants. Plant Cell Environ 8:501–507, Leicester, Gran Bretaña

    Google Scholar 

  • Rada F, Goldstein G, Azócar A, Meinzer F (1985b) Daily and seasonal osmotic changes in a tropical treeline species. J. Exp. Botany 36(167):989–1000

    Article  Google Scholar 

  • Rada F, Goldstein G, Azócar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schulzii a caulescent giant rosette species. J Exp Bot 38:491–497

    Article  Google Scholar 

  • Rada F, González J, Briceño B, Azócar A, Jaimez R (1992) Net photosynthesis-leaf temperature relations in plant species with different height along an altitudinal gradient. Oecol Plant 13:535–542

    Google Scholar 

  • Rauscher JT (2002) Molecular phylogenetics of the Espeletia complex (Asteraceae): evidence from mrDNA ITS sequences on the closest relatives of an Andean adaptive radiation. Am J Bot 89:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 21–44

    Chapter  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptations to freezing stress. Springer, Berlin, 321 pp

    Book  Google Scholar 

  • Salick J, Zhendong F, Byg A (2009) Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Glob Environ Change 19:147–155

    Article  Google Scholar 

  • Sarmiento G (1986) Ecologically crucial features of climate in high tropical mountains. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 11–45

    Google Scholar 

  • Schulze ED, Beck E, Scheibe R, Ziegler P (1985) Carbon dioxide assimilation and stomatal response of afroalpine giant rosette plants. Oecologia 65:207–213

    Article  Google Scholar 

  • Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6:263–266

    Article  Google Scholar 

  • Smith AP (1979) The function of dead leaves in Espeletia schultzii (Compositae) an Andean giant rosette species. Biotropica 11:43–47

    Article  Google Scholar 

  • Smith AP (1980) The paradox of plant height in an Andean giant rosette species. J Ecol 68:63–68

    Article  Google Scholar 

  • Smith AP (1981) Growth and population dynamics of Espeletia (Compositae) of the Venezuelan Andes. Smithsonian Contribut Botany 48:1–45

    Article  Google Scholar 

  • Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158

    Article  Google Scholar 

  • Squeo F, Rada F, Azócar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plants’ species distribution: future challenges. Perspect Plant Ecol Evol Systemat 9:137–152

    Article  Google Scholar 

  • Troll C (1968) The cordilleras of the tropical Americas. In: Troll C (ed) Geoecology of the mountainous regions of the tropical Americas. Dumbler, Bonn, pp 15–55

    Google Scholar 

  • Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99

    Article  Google Scholar 

  • Walther G, Beiβner S, Pott R (2005) Climate change and high mountain vegetation shifts. Mountain ecosystems, pp 77–96

    Google Scholar 

Download references

Acknowledgements

Financial support of the author’s research by the Consejo de Desarrollo Científico, Humanístico, Tecnológico y de las Artes (CDCHTA) of the Universidad de Los Andes , the Fondo Nacional de Ciencia, Tecnología e Innovación (FONACIT) and the Inter-American Institute for Global Change Research (IAI) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Rada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rada, F. (2016). Functional Diversity in Tropical High Elevation Giant Rosettes. In: Goldstein, G., Santiago, L. (eds) Tropical Tree Physiology. Tree Physiology, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-27422-5_8

Download citation

Publish with us

Policies and ethics