Skip to main content

Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 896))

Abstract

Single protein expression technologies have strongly benefited from the Structural Genomics initiatives that have introduced parallelization at the laboratory level. Specifically, the developments made in the wake of these initiatives have revitalized the use of Escherichia coli as major host for heterologous protein expression. In parallel to these improvements for single expression, technologies for complex reconstitution by co-expression in E. coli have been developed. Assessments of these co-expression technologies have highlighted the need for combinatorial experiments requiring automated protocols. These requirements can be fulfilled by adapting the high-throughput approaches that have been developed for single expression to the co-expression technologies. Yet, challenges are laying ahead that further need to be addressed and that are only starting to be taken into account in the case of single expression. These notably include the biophysical characterization of the samples at the small-scale level. Specifically, these approaches aim at discriminating the samples at an early stage of their production based on various biophysical criteria leading to cost-effectiveness and time-saving. This chapter addresses these various issues to provide the reader with a broad and comprehensive overview of complex reconstitution and characterization by co-expression in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerrigan JJ, Xie Q, Ames RS, Lu Q (2011) Production of protein complexes via co-expression. Protein Expr Purif 75(1):1–14

    Article  CAS  PubMed  Google Scholar 

  2. Perrakis A, Romier C (2008) Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview. Methods Mol Biol 426:247–256

    Article  CAS  PubMed  Google Scholar 

  3. Romier C (2008) Protein complexes assembly by multi-expression in bacterial and eukaryotic hosts. In: Sussman JL (ed) Structural proteomics. World Scientific Publishing Co., London, pp 233–250

    Google Scholar 

  4. Vincentelli R, Romier C (2013) Expression in Escherichia coli: becoming faster and more complex. Curr Opin Struct Biol 23(3):326–334

    Article  CAS  PubMed  Google Scholar 

  5. Barford D, Takagi Y, Schultz P, Berger I (2013) Baculovirus expression: tackling the complexity challenge. Curr Opin Struct Biol 23(3):357–364

    Article  CAS  PubMed  Google Scholar 

  6. Almo SC, Garforth SJ, Hillerich BS, Love JD, Seidel RD, Burley SK (2013) Protein production from the structural genomics perspective: achievements and future needs. Curr Opin Struct Biol 23(3):335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma L-C, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172(1):21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saez NJ, Nozach H, Blemont M, Vincentelli R (2014) High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp. 2014 Jul 30;(89):e51464

    Google Scholar 

  9. Saez NJ, Vincentelli R (2014) High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 1091:33–53

    Article  CAS  PubMed  Google Scholar 

  10. An Y, Meresse P, Mas PJ, Hart DJ (2011) CoESPRIT: a library-based construct screening method for identification and expression of soluble protein complexes. PLoS ONE 6(2):e16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bieniossek C, Nie Y, Frey D, Olieric N, Schaffitzel C, Collinson I, Romier C, Berger P, Richmond TJ, Steinmetz MO, Berger I (2009) Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods 6(6):447–450

    Article  CAS  PubMed  Google Scholar 

  12. Vijayachandran LS, Viola C, Garzoni F, Trowitzsch S, Bieniossek C, Chaillet M, Schaffitzel C, Busso D, Romier C, Poterszman A, Richmond TJ, Berger I (2011) Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175(2):198–208

    Article  CAS  PubMed  Google Scholar 

  13. Diebold M-L, Fribourg S, Koch M, Metzger T, Romier C (2011) Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J Struct Biol 175(2):178–188

    Article  CAS  PubMed  Google Scholar 

  14. Fribourg S, Romier C, Werten S, Gangloff YG, Poterszman A, Moras D (2001) Dissecting the interaction network of multiprotein complexes by pairwise coexpression of subunits in E. coli. J Mol Biol 306(2):363–373

    Article  CAS  PubMed  Google Scholar 

  15. Held D, Yaeger K, Novy R (2003) New coexpression vectors for expanded compatibilities in E. coli. Innovations 18:4–6

    Google Scholar 

  16. Novy R, Yaeger K, Held D, Mierendorf R (2002) Coexpression of multiple target proteins in E. coli. Innovations 15(2–6):2

    Google Scholar 

  17. Romier C, Ben Jelloul M, Albeck S, Buchwald G, Busso D, Celie PHN, Christodoulou E, De Marco V, van Gerwen S, Knipscheer P, Lebbink JH, Notenboom V, Poterszman A, Rochel N, Cohen SX, Unger T, Sussman JL, Moras D, Sixma TK, Perrakis A (2006) Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1232–1242

    Article  PubMed  Google Scholar 

  18. Scheich C, Kummel D, Soumailakakis D, Heinemann U, Bussow K (2007) Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Res 35(6):e43

    Article  PubMed  PubMed Central  Google Scholar 

  19. Selleck W, Tan S (2008) Recombinant protein complex expression in E. coli. Curr Protoc Protein Sci. Chapter 5:Unit 5.21

    Google Scholar 

  20. Tan S (2001) A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr Purif 21(1):224–234

    Article  CAS  PubMed  Google Scholar 

  21. Tan S, Kern RC, Selleck W (2005) The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expr Purif 40(2):385–395

    Article  CAS  PubMed  Google Scholar 

  22. Tolia NH, Joshua-Tor L (2006) Strategies for protein coexpression in Escherichia coli. Nat Methods 3(1):55–64

    Article  CAS  PubMed  Google Scholar 

  23. Correa A, Oppezzo P (2011) Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 6(6):715–730

    Article  CAS  PubMed  Google Scholar 

  24. Mooij WTM, Mitsiki E, Perrakis A (2009) ProteinCCD: enabling the design of protein truncation constructs for expression and crystallization experiments. Nucleic Acids Res 37(Web Server issue):402–405

    Article  Google Scholar 

  25. Graslund S, Sagemark J, Berglund H, Dahlgren L-G, Flores A, Hammarstrom M, Johansson I, Kotenyova T, Nilsson M, Nordlund P, Weigelt J (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58(2):210–221

    Article  PubMed  Google Scholar 

  26. Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535

    Article  CAS  PubMed  Google Scholar 

  27. Esposito D, Garvey LA, Chakiath CS (2009) Gateway cloning for protein expression. Methods Mol Biol 498:31–54

    Article  CAS  PubMed  Google Scholar 

  28. Berrow NS, Alderton D, Sainsbury S, Nettleship J, Assenberg R, Rahman N, Stuart DI, Owens RJ (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35(6):e45

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18(20):6069–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4(3):251–256

    Article  CAS  PubMed  Google Scholar 

  31. Jeong J-Y, Yim H-S, Ryu J-Y, Lee HS, Lee J-H, Seen D-S, Kang SG (2012) One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol 78(15):5440–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y (2010) Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172(1):34–44

    Article  CAS  PubMed  Google Scholar 

  33. Berrow NS, Bussow K, Coutard B, Diprose J, Ekberg M, Folkers GE, Levy N, Lieu V, Owens RJ, Peleg Y, Pinaglia C, Quevillon-Cheruel S, Salim L, Scheich C, Vincentelli R, Busso D (2006) Recombinant protein expression and solubility screening in Escherichia coli: a comparative study. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1218–1226

    Article  PubMed  Google Scholar 

  34. Vera A, Gonzalez-Montalban N, Aris A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96(6):1101–1106

    Article  CAS  PubMed  Google Scholar 

  35. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55(1):29–37

    Article  CAS  PubMed  Google Scholar 

  36. Vincentelli R, Cimino A, Geerlof A, Kubo A, Satou Y, Cambillau C (2011) High-throughput protein expression screening and purification in Escherichia coli. Methods 55(1):65–72

    Article  CAS  PubMed  Google Scholar 

  37. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41(1):207–234

    Article  CAS  PubMed  Google Scholar 

  38. Veesler D, Spinelli S, Mahony J, Lichiere J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D, Cambillau C (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 109(23):8954–8958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haffke M, Marek M, Pelosse M, Diebold M-L, Schlattner U, Berger I, Romier C (2015) Characterization and production of protein complexes by co-expression in Escherichia coli. Methods Mol Biol 1261:63–89

    Article  CAS  PubMed  Google Scholar 

  40. Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, Dhe-Paganon S, Park H-W, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim S-H, Rao Z, Shi Y, Terwilliger TC, Kim C-Y, Hung L-W, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5(2):135–146

    Article  PubMed  Google Scholar 

  41. LaVallie ER, Lu Z, Diblasio-Smith EA, Collins-Racie LA, McCoy JM (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    Article  CAS  PubMed  Google Scholar 

  42. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15(1):182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8(8):1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith DB (2000) Generating fusions to glutathione S-transferase for protein studies. Methods Enzymol 326:254–270

    Article  CAS  PubMed  Google Scholar 

  45. Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360

    Article  CAS  PubMed  Google Scholar 

  46. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  47. Park H-S, Hohn MJ, Umehara T, Guo L-T, Osborne EM, Benner J, Noren CJ, Rinehart J, Soll D (2011) Expanding the genetic code of Escherichia coli with phosphoserine. Science 333(6046):1151–1154

    Article  CAS  PubMed  Google Scholar 

  48. Low C, Moberg P, Quistgaard EM, Hedren M, Guettou F, Frauenfeld J, Haneskog L, Nordlund P (2013) High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochim Biophys Acta 1830(6):3497–3508

    Article  PubMed  Google Scholar 

  49. Sala E, de Marco A (2010) Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Protein Expr Purif 74(2):231–235

    Article  CAS  PubMed  Google Scholar 

  50. Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. Methods Mol Biol 899:403–423

    Article  CAS  PubMed  Google Scholar 

  51. Sciara G, Blangy S, Siponen M, Mc Grath S, van Sinderen D, Tegoni M, Cambillau C, Campanacci V (2008) A topological model of the baseplate of lactococcal phage Tuc 2009. J Biol Chem 283(5):2716–2723

    Article  CAS  PubMed  Google Scholar 

  52. Senisterra G, Chau I, Vedadi M (2012) Thermal denaturation assays in chemical biology. Assay Drugs Dev Technol 10(2):128–136

    Article  CAS  Google Scholar 

  53. Boivin S, Kozak S, Meijers R (2013) Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif 91(2):192–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by institutional funds from the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université de Strasbourg, the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01, and by Instruct part of the European Strategy Forum on Research Infrastructures (ESFRI) and through national member agreements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renaud Vincentelli or Christophe Romier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vincentelli, R., Romier, C. (2016). Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_4

Download citation

Publish with us

Policies and ethics