Skip to main content

Massively Parallel Cellular Matrix Model for Superpixel Adaptive Segmentation Map

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Its Applications (MICAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9414))

Included in the following conference series:

Abstract

We propose the concept of superpixel adaptive segmentation map, to produce a perceptually meaningful representation of rigid pixel image, with higher resolution of more superpixels on interesting regions according to the density distribution of desired attributes. The solution is based on the self-organizing map (SOM) algorithm, for the benefits of SOM’s ability to generate a topological map according to a probability distribution and its potential to be a natural massive parallel algorithm. We also propose the concept of parallel cellular matrix which partitions the Euclidean plane defined by input image into an appropriate number of uniform cell units. Each cell is responsible of a certain part of the data and the cluster center network, and carries out massively parallel spiral searches based on the cellular matrix topology. Experimental results from our GPU implementation show that the proposed algorithm can generate adaptive segmentation map where the distribution of superpixels reflects the gradient distribution or the disparity distribution of input image, with respect to scene topology. When the input size augments, the running time increases in a linear way with a very weak increasing coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ivrl.epfl.ch/research/superpixels.

  2. 2.

    https://github.com/carlren/gSLICr.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  2. Ren, X., Malik, J.: Learning a classification model for segmentation. In: 2003 Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 10–17. IEEE (2003)

    Google Scholar 

  3. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: BVMC (2007)

    Google Scholar 

  4. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest point problems. ACM Trans. Math. Softw. (TOMS) 6, 563–580 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167–181 (2004)

    Article  Google Scholar 

  7. Moore, A.P., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  8. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  10. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  12. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31, 2290–2297 (2009)

    Article  Google Scholar 

  13. Weikersdorfer, D., Gossow, D., Beetz, M.: Depth-adaptive superpixels. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2087–2090. IEEE (2012)

    Google Scholar 

  14. Hasnat, M.A., Alata, O., Trmeau, A.: Unsupervised RGB-D image segmentation using joint clustering and region merging. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)

    Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer Science & Business Media, The Netherlands (2001)

    MATH  Google Scholar 

  16. Wang, H., Zhang, N., Creput, J.C., Moreau, J., Ruichek, Y.: Parallel structured mesh generation with disparity maps by GPU implementation. IEEE Trans. Visual Comput. Graphics 21, 1045–1057 (2015)

    Article  Google Scholar 

  17. NVIDIA: CUDA C Programming Guide 4.2, CURAND Library, Profiler User’s Guide (2012). http://docs.nvidia.com/cuda

  18. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, Upper Saddle River (2010)

    Google Scholar 

  19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-195. IEEE (2003)

    Google Scholar 

  20. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92, 1–31 (2011)

    Article  Google Scholar 

  21. Ren, C.Y., Reid, I.: gSLIC: a real-time implementation of SLIC superpixel segmentation. Technical report, Department of Engineering, University of Oxford (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, H., Mansouri, A., Créput, JC., Ruichek, Y. (2015). Massively Parallel Cellular Matrix Model for Superpixel Adaptive Segmentation Map. In: Pichardo Lagunas, O., Herrera Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2015. Lecture Notes in Computer Science(), vol 9414. Springer, Cham. https://doi.org/10.1007/978-3-319-27101-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27101-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27100-2

  • Online ISBN: 978-3-319-27101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics