Skip to main content

Potato Diversity and Its Genetic Enhancement

  • Chapter
  • First Online:
Gene Pool Diversity and Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 10))

Abstract

Potato is the world’s third largest food crop after rice and wheat widely grown across all continents. It belongs to the genus Solanum and section Petota that contain approximately 2000 species that are distributed from the South-western United States (38°N) to Chile (41°S) between 2000 to 4000 m altitudes. Potato has 6 cultivated species, 225 wild relatives and 110 wild tuber-bearing species. The main cultivated potato species Solanum tuberosum L., a tetraploid (2n = 4x = 48) originated from Andes of Peru and Bolivia in South America over 10,000 years ago. The ploidy of potatoes varies from diploid (2n = 24) to hexaploid (2n = 72) with majority being diploids. Potatoes were introduced to Europe in 1570s and by beginning of seventeenth century they spread to the other parts of the world. Systematic potato breeding started in 1807 in England followed by other parts of Europe, North America, India, International Potato Centre, Peru and China. There are two basic approaches to conserve potato genetic resources, viz. in situ and ex situ. Currently, cryo-conservation is being tapped for long-term conservation. Seven major potato gene banks are present worldwide to conserve existing diversity. Although more germplasm are being evaluated, the use of genetic resources has been much poorer to their evaluations mainly due to undesirable tuber traits of the wild species and crossability barriers. This has led to narrow genetic base of the cultivated potatoes. The ‘Irish famine’ of 1840s depicts the devastating effect of growing large areas under a single variety. Cultivated potato exhibits complex tetrasomic inheritance and high heterozygosity. Dihaploids of tuberosum cross readily with many diploid species thus providing opportunity for introgression of useful traits from alien sources to cultivated background. The other well-exploited techniques in potato breeding, viz. somaclonal variations, somatic hybridization, molecular markers, genetic transformation and RNAi approaches. Potato is one of the rare crops where maximum tissue culture and genetic engineering interventions have been connoted. Today, potato genome is sequenced and it opens up new vistas for developing tailor-made varieties in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2007) Potato and potato products cultivation, seed production, manuring, harvesting, organic farming, storage and processing, NIIR Project Consultancy Services, pp 1–12

    Google Scholar 

  • Barone A (2004) Molecular marker-assisted selection for potato breeding. Am J Potato Res 81:111–117

    Article  Google Scholar 

  • Barone A, Sebastiano A, Carputo D, Della Rocca F, Frusciante L (2001) Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated gene pool. Theor Appl Genet 102:900–907

    Google Scholar 

  • Batten GD (1993) A review of phosphorus efficiency in wheat. In: Randall PJ et al (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, pp 215–220

    Google Scholar 

  • Bered F, Terra TF, Spellmeier M, Neto JFB (2005) Genetic variation among and within sweet corn populations detected by RAPD and SSR markers. Crop Breed Appl Biotechnol 5:418–425

    Article  CAS  Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 467–498

    Google Scholar 

  • Caligari PDS (1992) Breeding new varieties. In: Harris PM (ed) The potato crop, 2nd edn. Chapman & Hall, London, New York, pp 334–372

    Chapter  Google Scholar 

  • Carputo D, Frusciante L, Monti L, Parisi M, Barone A (2002) Tuber quality and soft rot resistance of hybrids between Solanum tuberosum and the incongruent wild relative S. commersonii. Am J Potato Res 79:345–352

    Article  Google Scholar 

  • Chakaborty S, Chakaborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729

    Article  Google Scholar 

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    Article  CAS  Google Scholar 

  • Clusius C (1601) Rariorum planatarum historia. Moretus, Plantin, Antwerp

    Google Scholar 

  • Cockerham G (1970) Genetical studies on resistance to potato viruses X and Y. Heredity 25:309–348

    Article  Google Scholar 

  • Coombs JJ, Frank LM, Souches DS (2004) An applied fingerprinting system for cultivated potato using simple sequence repeats. Am J Potato Res 81:243–250

    Article  CAS  Google Scholar 

  • Cribb PJ, Hawkes JG (1986) Experimental evidence for the origin of S. tuberosum subsp. andigena. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp. 383–404

    Google Scholar 

  • Curwen JC (1818) Observations on the state of Ireland, vol I. Baldwin, Craddock and Brown, London

    Google Scholar 

  • Dale MFB, Mackay GR (1994) Inheritance of table and processing quality. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 285–315

    Google Scholar 

  • de Cieza De León P (1553) La Crónica Del Perú. Seville. English edition: de Cieza De León P (1553) The Chronicles of Peru (trans: Sir Clements R). Markham in Hakluyt Society 33 and 68, 1864 and 1883, London

    Google Scholar 

  • Demeke T, Lynch DR, Kawchuck LM, Kozub GC, Armstrong JD (1996) Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep 15:662–667

    Article  CAS  PubMed  Google Scholar 

  • Dodds KS (1962) Classification of cultivated potatoes. In: Correl D (ed) The potato and its wild relatives. Texas Research Foundation, Renner, Texas, pp. 517–539

    Google Scholar 

  • Drake SF (1628) The world encompassed, vol 16. Hakluyt Society, London, p 1854

    Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51:487–496

    Article  CAS  PubMed  Google Scholar 

  • Duynisveld WHM, Strebel O, Bottcher J (1988) Are nitrate leaching from arable land and nitrate pollution of ground water avoidable. Ecol Bull. 39:116–125

    CAS  Google Scholar 

  • Errebhi M, Rosen CJ, Lauer FI, Martin MW, Bamberg JB (1999) Evaluation of tuber-bearing Solanum species for nitrogen use efficiency and biomass partitioning. Am J Potato Res 76:143–151

    Article  Google Scholar 

  • Ford R, Taylor PWJ (1997) The application of RAPD markers for potato cultivar identification. Aust J Agric Res 48:1213–1217

    Article  CAS  Google Scholar 

  • Garcia AF, Alberini JL, Zucchi MI, De Souza AP (2007) Microsatellite molecular markers in the cultivar identification of Brazilian soybean for human consumption. Crop Breed Appl Biotechnol 7:155–164

    Article  Google Scholar 

  • Garg ID, Khurana SMP, Kumar S, Lakra BS (2001) Association of a gemi-nivirus with potato apical leaf curl in India and its immuno-electron microscopic detection. J Indian Potato Assoc 28:227–232

    Google Scholar 

  • Glendinning DR (1983) Potato introductions and breeding up to the early 20th century. New Phytol 94:479–505

    Article  Google Scholar 

  • Gomara LD (1552) Historia General de las Indias (General History of the Indies)

    Google Scholar 

  • Gopal J, Gaur PC (1997) Potato genetic resources in India. Ind J Plant Genetic Res 10:205–215

    Google Scholar 

  • Graham RD (1984) Breeding for nutritional characteristics in cereals. Adv Plant Nutr 1:57–102

    Google Scholar 

  • Grun P (1979). Evolution of the cultivated potato: a cytoplasmic analysis. In: Hawkes JG, Lister, RN, Skelding AD (eds) The biology and taxonomy of Solanaceae. London, Academic Press, p 655–665

    Google Scholar 

  • Hawkes JG (1990) The potato, evolution, biodiversity and genetic resources. Belhaven Press, London, 259 p

    Google Scholar 

  • Hawkes JG (1992) History of the potato. In: Harris PM (ed) The potato crop. Chapman & Hall, London, pp 2–12

    Google Scholar 

  • Hawkes JG (1994) Origins of cultivated potatoes and species relationships. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, UK, pp 3–42

    Google Scholar 

  • Jeffries C, Barker H, Khurana SMP (2006) Viruses & viroids. In: Gopal J, Paul Khurana SM (eds) Handbook of potato production, improvement and post harvest management. The Howarth Press Inc., USA, pp 387–448

    Google Scholar 

  • Jin LP, Qu DY, Xie KY, Bian CS, Duan SG (2004) Potato germplasm, breeding studies in China. In: Proceedings of the Fifth world potato congress, Kunming, China, 26–31 March 2004, pp. 175–177

    Google Scholar 

  • Johnston GR, Rowberry RG (1981) Yukon gold: a new yellow-fleshed, mediumearly, high quality table and French-fry cultivar. Am Potato J 58:241–244

    Article  Google Scholar 

  • Khurana SMP (1999) Potato viruses and viral diseases. Tech Bull No 35 (Revised), CPRI, Shimla, 94 p

    Google Scholar 

  • Khurana SMP (2008) Potato viruses. In: Rao GP et al (ed) Characterization, diagnosis & management of plant viruses. Volume I: industrial crops. Studium Press LLC, Texas, pp 1–45

    Google Scholar 

  • Khurana SMP, Garg ID (1998) Present status of controlling non-persistently aphid-transmitted potato viruses. In: Hadidi A et al (eds) Plant virus disease control. APS Press, St. Paul, pp 583–615

    Google Scholar 

  • Khurana SMP, Chandra R, Upadhya MD (eds) (1998) Comprehensive potato biotechnology. MPH, New Delhi, 370 p

    Google Scholar 

  • Krishna Prasad KS (1993) Nematodes-distribution, biology and management. In: Chadha KL, Grewal JS (eds) Advances in Horticulture volume 7-potato. Malhotra Publishing House, New Delhi, pp 635–647

    Google Scholar 

  • Kujal S, Chakrabarti SK, Pandey SK, Khurana SMP (2005) Genetic divergence in tetraploid potato (Solanum tuberosum s spp tuberosum) as revealed by RAPD vis a vis morphological markers. Potato J 32(1–2):17–27

    Google Scholar 

  • Lloyd JR, Springer F, Buleon A, Müller-Röber B, Willmitzer L, Kossmann J (1999) The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209:230–238

    Article  Google Scholar 

  • Lu W, Haynes K, Wiley E, Clevidence B (2001) Carotenoid content and color in diploid potatoes. J Am Soc Hort Sci 126:722–726

    CAS  Google Scholar 

  • Menéndez CM, Ritter E, Schäfer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C (2002) Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162:1423–1434

    PubMed  PubMed Central  Google Scholar 

  • Minhas JS, Devendra Kumar TA, Joseph BT, Raj SMP, Khurana SK, Pandey SV, Singh BPS, Naik PS (2006) Kufri Surya: a new heat tolerant potato variety suitable for early planting in north-western plains, peninsular India and processing into French fries and chips. Potato J 33:35–43

    Google Scholar 

  • Pavek JJ, Corsini DL (2001) Utilization of potato genetic resources in variety development. Am J Potato Res 78:433–441

    Article  Google Scholar 

  • Provan J, Powell W, Dewar H, Bryan G, Machray GC, Waugh R (1999) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc R Soc Lond B Biol Sci 266:633–639

    Article  Google Scholar 

  • Pushkarnath (1969) Potato in India-varieties. New Delhi, Indian Council of Agricultural Research, p 493

    Google Scholar 

  • Pushkarnath (1976) Varieties and varietal problems. In: Pushkarnath (ed) Potato in sub tropics. Orient Longman Limited, New Delhi, pp 173–216

    Google Scholar 

  • Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandman G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and cosuppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  Google Scholar 

  • Ross H (1986) Potato breeding-problems and perspectives. Springer, Berlin, p 132

    Google Scholar 

  • Salaman RN (1929) Genetic studies in potatoes: abnormal segregation in families arising from the cross S. utile X S. tuberosum. J Genet 20:311–343

    Article  Google Scholar 

  • Schäfer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L, Walkemeier B, Thelen H, Salamini F, Gebhardt C (1998) Analysis of quantitativetrait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor Appl Genet 97:834–846

    Article  Google Scholar 

  • Schneider K, Douches DS (1997) Assessment of PCR-based simple sequence repeats to fingerprint North American potato cultivars. Am Potato J 74:149–160

    Article  CAS  Google Scholar 

  • Schwall GP, Safford R, Westcott RJ, Jeffcoat R, Tayal A, Shi Y-C, Gidley MJ, Jobling SA (2000) Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol 18:551–554

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Zebarth BJ, Coleman W (2007) Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system. Commun Soil Sci Plant Anal 38:359–370

    Article  CAS  Google Scholar 

  • Shekhawat GS, Khurana SMP, Singh BP (2000) Important diseases of potato and their management. In: Khurana SMP, Shekhawat GS, Singh BP, Pandey SK (eds) Potato global research and development, vol 1. Indian Potato Association, Shimla, pp 281–303

    Google Scholar 

  • Shi YC, Capitani T, Trzasko P, Jeffcoat R (1998) Molecular structure of a lowamylopectin starch and other high-amylose maize starches. J Cereal Sci 27:289–299

    Article  CAS  Google Scholar 

  • Singh BP (2000) Status of late blight in sub-tropics. In: Khurana SMP, Shekhawat GS, Singh BP, Pandey SK (eds) Potato global research and development, vol 1. Indian Potato Association, Shimla, pp 525–533

    Google Scholar 

  • Singh BP, Shekhawat GS (eds) (1999) Potato late blight in India. Tech Bull No. 27 (Revised). CPRI, Shimla, 85 p

    Google Scholar 

  • Solomon-blackburn RM, Barker H (2001) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17–35

    Article  CAS  PubMed  Google Scholar 

  • Spooner D, Alberto S (2006) Structure biosystematics and genetic resources. In: Gopal J, Khurana SMP (eds) Handbook of potato-production improvement, and postharvest management. Haworth Press, Inc. New York, pp 1–40

    Google Scholar 

  • Tai GCC (1994) Use of 2n gametes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International, Wallingford, pp 109–132

    Google Scholar 

  • Tiwari JK, Gopal J, Singh BP (2012) Marker-assisted selection for virus resistance in potato: options and challenges. Potato J 39(2):101–117

    Google Scholar 

  • Trehan SP (2009) Improving nutrient use efficiency by exploiting genetic diversity of potato. Potato J 36(3–4):121–135

    Google Scholar 

  • Trehan SP, Dessougi HEL, Claassen N (2005) Potassium efficiency of ten potato cultivars as related to their capability to use non-exchangeable soil potassium by chemical mobilization. Commun Soil Sci Plant Anal 36:1809–1822

    Article  CAS  Google Scholar 

  • Trehan SP, Upadhayay NC, Sud KC, Kumar M, Jatav MJ, Lal SS (2008) Nutrient management in potato. Technical Bulletin No. 90. Central Potato Research Institute, Shimla, India, p 64

    Google Scholar 

  • Ugent D, Pozorski S, Pozorski T (1982) Archaeological potato remains from the Casma valley of Peru. Econ Botony 36:181–192

    Google Scholar 

  • Upadhya MD (1974) Potato. In: Hutchinson J (ed) Evolutionary studies in world crops. Cambridge University Press, Cambridge, pp 139–149

    Google Scholar 

  • Usharani KS, Surendranath B, Khurana SMP, Garg ID, Malathi VG (2003) Potato leaf curl—a new disease of potato in northern India caused by a strain of Tomato leaf curl New Delhi virus. New Dis Rep 8:2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SM Paul Khurana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, A., Bhardwaj, V., Singh, B., Khurana, S.P. (2016). Potato Diversity and Its Genetic Enhancement. In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-27096-8_6

Download citation

Publish with us

Policies and ethics