Skip to main content

On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

In the cardiovascular and hematopoietic systems the Transient Receptor Potential Canonical 3 (TRPC3) channel has a well-recognized role in a number of signaling mechanisms that impact the function of diverse cells and tissues in physiology and disease. The latter includes, but is not limited to, molecular and cellular mechanisms associated to the pathogenesis of cardiac hypertrophy, hypertension and endothelial dysfunction. Despite several of these functions being closely related to atherorelevant mechanisms, the potential roles of TRPC3 in atherosclerosis, the major cause of coronary artery disease, have remained largely unexplored. Over recent years, a series of studies from the authors’ laboratory revealed novel functions of TRPC3 in mechanisms related to endothelial inflammation, monocyte adhesion to endothelium and survival and apoptosis of macrophages. The relevance of these new TRPC3 functions to atherogenesis has recently began to receive validation through studies in mouse models of atherosclerosis with conditional gain or loss of TRPC3 function. This chapter summarizes these novel findings and provides a discussion of their impact in the context of atherosclerosis, in an attempt to delineate a framework for further exploration of this terra incognita in the TRPC field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322

    Article  PubMed  Google Scholar 

  2. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34(10):719–728

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz SM, Galis ZS, Rosenfeld ME, Falk E (2007) Plaque rupture in humans and mice. Arterioscler Thromb Vasc Biol 27(4):705–713

    Article  CAS  PubMed  Google Scholar 

  4. Smedlund K, Bah M, Vazquez G (2012) On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 10(3):265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J Off Publ Fed Am Soc Exp Biol 23(2):297–328

    CAS  Google Scholar 

  6. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J Off Publ Fed Am Soc Exp Biol 20(10):1660–1670

    CAS  Google Scholar 

  8. Shan D, Marchase RB, Chatham JC (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol 294(3):C833–C841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smyth JT, DeHaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JJW (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta (BBA) Mol Cell Res 1763(11):1147–1160

    Article  CAS  Google Scholar 

  10. Vazquez G, Tano JY, Smedlund K (2010) On the potential role of source and species of diacylglycerol in phospholipase-dependent regulation of TRPC3 channels. Channels (Austin Tex) 4(3):232–240

    Article  CAS  Google Scholar 

  11. Liao Y, Abramowitz J, Birnbaumer L (2014) The TRPC family of TRP channels: roles inferred (mostly) from knockout mice and relationship to ORAI proteins. Handb Exp Pharmacol 223:1055–1075

    Article  CAS  PubMed  Google Scholar 

  12. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742(1–3):21–36

    Article  CAS  PubMed  Google Scholar 

  13. Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol 49:395–426

    Article  CAS  PubMed  Google Scholar 

  14. Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33(5–6):451–461

    Article  CAS  PubMed  Google Scholar 

  15. Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci U S A 93(26):15195–15202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273(15):8675–8679

    Article  CAS  PubMed  Google Scholar 

  17. Wedel BJ, Vazquez G, McKay RR, St. J. Bird G, Putney JW Jr (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278(28):25758–25765

    Article  CAS  PubMed  Google Scholar 

  18. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel: evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588–13595

    Article  CAS  PubMed  Google Scholar 

  19. Tano J-Y, Smedlund K, Vazquez G (2010) Endothelial TRPC3/6/7 proteins at the edge of cardiovascular disease. Cardiovasc Hematol Agents Med Chem (Formerly Curr Med Chem Cardiovasc Hematol Agents) 8:76–86

    CAS  Google Scholar 

  20. Quehenberger O (2005) Molecular mechanisms regulating monocyte recruitment in atherosclerosis. J Lipid Res 46:1582–1590

    Article  CAS  PubMed  Google Scholar 

  21. Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 11:2292–2301

    Article  Google Scholar 

  22. Allen S, Khan S, S-P T, Koschinsky M, Taylor P, Yacoub M (1998) Expression of adhesion molecules by Lp(a): a potential novel mechanism for its atherogenicity. FASEB J 12(15):1765–1776

    CAS  PubMed  Google Scholar 

  23. Seye CI, Yu N, Jain R, Kong Q, Minor T, Newton J, Erb L, Gonzalez FA, Weisman GA (2003) The P2Y2 nucleotide receptor mediates UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J Biol Chem 278(27):24960–24965

    Article  CAS  PubMed  Google Scholar 

  24. Quinlan KL, Naik SM, Cannon G, Armstrong CA, Bunnett NW, Ansel JC, Caughman SW (1999) Substance P activates coincident NF-AT- and NF-kB-dependent adhesion molecule gene expression in microvascular endothelial cells through intracellular calcium mobilization. J Immunol 163(10):5656–5665

    CAS  PubMed  Google Scholar 

  25. Smedlund K, Vazquez G (2008) Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 28(11):2049–2055

    Article  CAS  PubMed  Google Scholar 

  26. Zhang C (2008) The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol 103(5):398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smedlund K, Tano JY, Vazquez G (2010) The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor kappaB signaling. Circ Res 106(9):1479–1488

    Article  CAS  PubMed  Google Scholar 

  28. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV (2014) Role of endoplasmic reticulum stress in atherosclerosis and diabetic macrovascular complications. Biomed Res Int 2014:610140

    PubMed  PubMed Central  Google Scholar 

  29. Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107(7):839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kadowaki H, Nishitoh H (2013) Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes 4(3):306–333

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim MS, Lee KP, Yang D, Shin DM, Abramowitz J, Kiyonaka S, Birnbaumer L, Mori Y, Muallem S (2011) Genetic and pharmacologic inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+-dependent toxicity. Gastroenterology 140(7):2107–2115, 2115 e2101-2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakano T, Watanabe H, Ozeki M, Asai M, Katoh H, Satoh H, Hayashi H (2006) Endoplasmic reticulum Ca2+ depletion induces endothelial cell apoptosis independently of caspase-12. Cardiovasc Res 69(4):908–915

    Article  CAS  PubMed  Google Scholar 

  33. Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE 7(10):e45078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prell T, Lautenschlager J, Weidemann L, Ruhmer J, Witte OW, Grosskreutz J (2014) Endoplasmic reticulum stress is accompanied by activation of NF-kappaB in amyotrophic lateral sclerosis. J Neuroimmunol 270(1–2):29–36

    Article  CAS  PubMed  Google Scholar 

  35. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca2+ entry pathways. Br J Pharmacol 167(8):1712–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tabas I (2009) Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal 11(9):2333–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gautier EL, Huby T, Witztum JL, Ouzilleau B, Miller ER, Saint-Charles F, Aucouturier P, Chapman MJ, Lesnik P (2009) Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage. Circulation 119(13):1795–1804

    Article  CAS  PubMed  Google Scholar 

  39. Babaev VR, Chew JD, Ding L, Davis S, Breyer MD, Breyer RM, Oates JA, Fazio S, Linton MF (2008) Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab 8(6):492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256–1261

    Article  CAS  PubMed  Google Scholar 

  41. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927

    Article  CAS  PubMed  Google Scholar 

  42. Tano JY, Vazquez G (2011) Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling. Biochem Biophys Res Commun 407(2):432–437

    Article  CAS  PubMed  Google Scholar 

  43. Tano JY, Lee RH, Vazquez G (2012) Involvement of calmodulin and calmodulin kinase II in tumor necrosis factor alpha-induced survival of bone marrow derived macrophages. Biochem Biophys Res Commun 427(1):178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tano JY, Smedlund K, Lee R, Abramowitz J, Birnbaumer L, Vazquez G (2011) Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages. Biochem Biophys Res Commun 410(3):643–647

    Article  CAS  PubMed  Google Scholar 

  45. Tano JY, Solanki S, Lee RH, Smedlund K, Birnbaumer L, Vazquez G (2014) Bone marrow deficiency of TRPC3 channel reduces early lesion burden and necrotic core of advanced plaques in a mouse model of atherosclerosis. Cardiovasc Res 101(1):138–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225(2):461–468

    Article  PubMed  Google Scholar 

  47. Leitinger N, Schulman IG (2013) Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33(6):1120–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolfs IM, Donners MM, de Winther MP (2011) Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 106(5):763–771

    Article  CAS  PubMed  Google Scholar 

  49. Gordon S, Mantovani A (2011) Diversity and plasticity of mononuclear phagocytes. Eur J Immunol 41(9):2470–2472

    Article  CAS  PubMed  Google Scholar 

  50. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Solanki S, Dube PR, Tano JY, Birnbaumer L, Vazquez G (2014) Reduced endoplasmic reticulum stress-induced apoptosis and impaired unfolded protein response in TRPC3-deficient M1 macrophages. Am J Physiol Cell Physiol 307(6):C521–C531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117(7):940–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel-Duby R, Olson EN, Anderson ME, Tabas I (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119(10):2925–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Thewke DP, Su YR, Linton MF, Fazio S, Sinensky MS (2005) Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 25(1):174–179

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, Linton MF, Fazio S (2010) Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler Thromb Vasc Biol 30(4):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils*. Acta Physiol 195(1):3–11

    Article  CAS  Google Scholar 

  58. Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350(3):762–767

    Article  CAS  PubMed  Google Scholar 

  59. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Luckhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371(Pt 3):1045–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Itagaki K, Barton BE, Murphy TF, Taheri S, Shu P, Huang H, Jordan ML (n.d.) Eicosanoid-induced store-operated calcium entry in dendritic cells. J Surg Res 169(2):301–310

    Google Scholar 

  61. Pantaler E, Luckhoff A (2009) Inhibitors of TRP channels reveal stimulus-dependent differential activation of Ca2+ influx pathways in human neutrophil granulocytes. Naunyn Schmiedeberg’s Arch Pharmacol 380(6):497–507

    Article  CAS  Google Scholar 

  62. Smedlund K, Birnbaumer L, Vazquez G (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel Proc Natl Acad Sci U S A 112(17): E2201–E2206

    Google Scholar 

  63. Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang XF (2012) Endothelial progenitor cells in atherosclerosis. Front Biosci (Landmark Ed) 17:2327–2349

    Article  Google Scholar 

  64. Fledderus JO, van Oostrom O, de Kleijn DP, den Ouden K, Penders AF, Gremmels H, de Bree P, Verhaar MC (2013) Increased amount of bone marrow-derived smooth muscle-like cells and accelerated atherosclerosis in diabetic apoE-deficient mice. Atherosclerosis 226(2):341–347

    Article  CAS  PubMed  Google Scholar 

  65. Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C (2012) Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 287(15):11629–11641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vazquez G (2012) TRPC channels as prospective targets in atherosclerosis: terra incognita. Front Biosci (Schol Ed) 4:157–166

    Article  Google Scholar 

  67. Jain S, Amiji M (2012) Macrophage-targeted nanoparticle delivery systems. In: Svenson S, Prud’homme RK (eds) Multifunctional nanoparticles for drug delivery applications. Nanostructure science and technology. Springer, New York, pp 47–83

    Chapter  Google Scholar 

  68. Hood ED, Chorny M, Greineder CF, SA I, Levy RJ, Muzykantov VR (2014) Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 35(11):3708–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01HL111877-04 (to G.V.),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vazquez, G., Solanki, S., Dube, P., Smedlund, K., Ampem, P. (2016). On the Roles of the Transient Receptor Potential Canonical 3 (TRPC3) Channel in Endothelium and Macrophages: Implications in Atherosclerosis. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_9

Download citation

Publish with us

Policies and ethics