Skip to main content

Historical Overview of Store-Operated Ca2+ Entry

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca2+ entry pathways: Ca2+ release from intracellular Ca2+ stores, signaled by IP3, leads to the activation of store-operated Ca2+ entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca2+ sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ebashi S (1961) Calcium binding activity of vesicular relaxing factor. J Chir (Paris) 50:236–244

    CAS  Google Scholar 

  2. Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol 4(1):29–42.3

    Google Scholar 

  3. Ringer S, Buxton DW (1885) Concerning the action of small quantities of calcium, sodium, and potassium salts upon the vitality and function of contractile tissue and the cuticular cells of fishes. J Physiol 6(4–5):154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology (Bethesda) 22:320–327

    Article  CAS  Google Scholar 

  5. Bianchi CP, Shanes AM (1959) Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol 42(4):803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winegrad S, Shanes AM (1962) Calcium flux and contractility in guinea pig atria. J Gen Physiol 45:371–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borle AB (1969) Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx. J Gen Physiol 53(1):43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borle AB (1968) Calcium metabolism in HeLa cells and the effects of parathyroid hormone. J Cell Biol 36(3):567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shigenobu K, Sperelakis N (1972) Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circ Res 31(6):932–952

    Article  CAS  PubMed  Google Scholar 

  10. Hogestatt ED (1984) Characterization of two different calcium entry pathways in small mesenteric arteries from rat. Acta Physiol Scand 122(4):483–495

    Article  CAS  PubMed  Google Scholar 

  11. Hallam TJ, Rink TJ (1985) Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett 186(2):175–179

    Article  CAS  PubMed  Google Scholar 

  12. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  13. Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. News Physiol Sci 13:157–163

    CAS  PubMed  Google Scholar 

  14. Takemura H, Putney JW Jr (1989) Capacitative calcium entry in parotid acinar cells. Biochem J 258(2):409–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sage SO, Merritt JE, Hallam TJ, Rink TJ (1989) Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J 258(3):923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thastrup O, Foder B, Scharff O (1987) The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion. Biochem Biophys Res Commun 142(3):654–660

    Article  CAS  PubMed  Google Scholar 

  17. Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266(26):17067–17071

    CAS  PubMed  Google Scholar 

  18. Takemura H, Hughes AR, Thastrup O, Putney JW Jr (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264(21):12266–12271

    CAS  PubMed  Google Scholar 

  19. Kwan CY, Takemura H, Obie JF, Thastrup O, Putney JW Jr (1990) Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol 258(6 Pt 1):C1006–C1015

    CAS  PubMed  Google Scholar 

  20. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355(6358):353–356

    Article  CAS  PubMed  Google Scholar 

  21. Okon EB, Golbabaie A, Breemen C (2008) Paracrine effects of endothelial cells in a diabetic mouse model: capacitative calcium entry stimulated thromboxane release. Horm Metab Res 40(9):645–650

    Article  CAS  PubMed  Google Scholar 

  22. Rosado JA, Lopez JJ, Harper AG, Harper MT, Redondo PC, Pariente JA, Sage SO, Salido GM (2004) Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem 279(28):29231–29235

    Article  CAS  PubMed  Google Scholar 

  23. Hofer AM, Fasolato C, Pozzan T (1998) Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J Cell Biol 140(2):325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1/STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420:267–276

    Article  CAS  PubMed  Google Scholar 

  25. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  26. Montero M, Garcia-Sancho J, Alvarez J (1993) Transient inhibition by chemotactic peptide of a store-operated Ca2+ entry pathway in human neutrophils. J Biol Chem 268(18):13055–13061

    CAS  PubMed  Google Scholar 

  27. Davis W, Sage SO, Allen JM (1994) Cytosolic calcium elevation in response to Fc receptor cross-linking in undifferentiated and differentiated U937 cells. Cell Calcium 16(1):29–36

    Article  CAS  PubMed  Google Scholar 

  28. Merritt JE, Rink TJ (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J Biol Chem 262(36):17362–17369

    CAS  PubMed  Google Scholar 

  29. van Breemen C, De Weer P (1970) Lanthanum inhibition of 45Ca efflux from the squid giant axon. Nature 226(5247):760–761

    Article  PubMed  Google Scholar 

  30. Lansman JB (1990) Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol 95(4):679–696

    Article  CAS  PubMed  Google Scholar 

  31. Rosado JA (2006) Discovering the mechanism of capacitative calcium entry. Am J Physiol Cell Physiol 291(6):C1104–C1106

    Article  CAS  PubMed  Google Scholar 

  32. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29(1):197–208

    Article  CAS  PubMed  Google Scholar 

  33. Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell’Italia LJ, Marchase RB (2002) Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277(16):14266–14273

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Moyano M, Diaz I, Dionisio N, Zhang X, Avila-Medina J, Calderon-Sanchez E, Trebak M, Rosado JA, Ordonez A, Smani T (2013) Urotensin-II promotes vascular smooth muscle cell proliferation through store operated calcium entry and EGFR transactivation. Cardiovasc Res 100:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu YJ, Gylfe E (1997) Store-operated Ca2+ entry in insulin-releasing pancreatic beta-cells. Cell Calcium 22(4):277–286

    Article  CAS  PubMed  Google Scholar 

  36. Tornquist K, Malm AM, Pasternack M, Kronqvist R, Bjorklund S, Tuominen R, Slotte JP (1999) Tumor necrosis factor-alpha, sphingomyelinase, and ceramide inhibit store-operated calcium entry in thyroid FRTL-5 cells. J Biol Chem 274(14):9370–9377

    Article  CAS  PubMed  Google Scholar 

  37. Zerbes M, Bunn SJ, Powis DA (1998) Histamine causes Ca2+ entry via both a store-operated and a store-independent pathway in bovine adrenal chromaffin cells. Cell Calcium 23(6):379–386

    Article  CAS  PubMed  Google Scholar 

  38. Kim JH, Shin SY, Nam JH, Hong EK, Chung YS, Jeong JY, Kang J, Uhm DY, Kim SJ (2003) Adrenergic regulation of the intracellular [Ca2+] and voltage-operated Ca2+ channel currents in the rat prostate neuroendocrine cells. Prostate 57(2):99–110

    Article  CAS  PubMed  Google Scholar 

  39. Vanoverberghe K, Lehen’kyi V, Thebault S, Raphael M, Vanden Abeele F, Slomianny C, Mariot P, Prevarskaya N (2012) Cytoskeleton reorganization as an alternative mechanism of store-operated calcium entry control in neuroendocrine-differentiated cells. PLoS ONE 7(9):e45615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231(1):189–209

    Article  CAS  PubMed  Google Scholar 

  41. McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124(6):1311–1318, e1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360(19):1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ariano P, Zamburlin P, D’Alessandro R, Meldolesi J, Lovisolo D (2010) Differential repression by the transcription factor REST/NRSF of the various Ca2+ signalling mechanisms in pheochromocytoma PC12 cells. Cell Calcium 47(4):360–368

    Article  CAS  PubMed  Google Scholar 

  44. Hao B, Lu Y, Wang Q, Guo W, Cheung KH, Yue J (2014) Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem Cell Res 12(2):452–466

    Article  CAS  PubMed  Google Scholar 

  45. Morales S, Camello PJ, Rosado JA, Mawe GM, Pozo MJ (2005) Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cell Signal 17(5):635–645

    Article  CAS  PubMed  Google Scholar 

  46. Chakraborty S, Berwick ZC, Bartlett PJ, Kumar S, Thomas AP, Sturek M, Tune JD, Obukhov AG (2011) Bromoenol lactone inhibits voltage-gated Ca2+ and transient receptor potential canonical channels. J Pharmacol Exp Ther 339(2):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Post JM, Gelband CH, Hume JR (1995) [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization. Circ Res 77(1):131–139

    Article  CAS  PubMed  Google Scholar 

  48. Lu W, Wang J, Peng G, Shimoda LA, Sylvester JT (2009) Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 297(1):L17–L25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330(6000):105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Suzuki Y, Yoshimaru T, Inoue T, Ra C (2009) Ca v 1.2 L-type Ca2+ channel protects mast cells against activation-induced cell death by preventing mitochondrial integrity disruption. Mol Immunol 46(11–12):2370–2380

    Article  CAS  PubMed  Google Scholar 

  52. Yoshimaru T, Suzuki Y, Inoue T, Ra C (2009) L-type Ca2+ channels in mast cells: activation by membrane depolarization and distinct roles in regulating mediator release from store-operated Ca2+ channels. Mol Immunol 46(7):1267–1277

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki Y, Inoue T, Ra C (2010) L-type Ca2+ channels: a new player in the regulation of Ca2+ signaling, cell activation and cell survival in immune cells. Mol Immunol 47(4):640–648

    Article  CAS  PubMed  Google Scholar 

  54. Matza D, Flavell RA (2009) Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev 231(1):257–264

    Article  CAS  PubMed  Google Scholar 

  55. Fierro L, Lund PE, Parekh AB (2000) Comparison of the activation of the Ca2+ release-activated Ca2+ current ICRAC to InsP3 in Jurkat T-lymphocytes, pulmonary artery endothelia and RBL-1 cells. Pflugers Arch 440(4):580–587

    CAS  PubMed  Google Scholar 

  56. Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci U S A 90(13):6295–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bakowski D, Parekh AB (2002) Monovalent cation permeability and Ca(2+) block of the store-operated Ca(2+) current I(CRAC) in rat basophilic leukemia cells. Pflugers Arch 443(5–6):892–902

    Article  CAS  PubMed  Google Scholar 

  58. Prakriya M, Lewis RS (2002) Separation and characterization of currents through store-operated CRAC channels and Mg2+ -inhibited cation (MIC) channels. J Gen Physiol 119(5):487–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol 267(4 Pt 1):C920–C925

    CAS  PubMed  Google Scholar 

  60. Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436(1):69–74

    Article  CAS  PubMed  Google Scholar 

  61. Krause E, Pfeiffer F, Schmid A, Schulz I (1996) Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J Biol Chem 271(51):32523–32528

    Article  CAS  PubMed  Google Scholar 

  62. Luckhoff A, Clapham DE (1994) Calcium channels activated by depletion of internal calcium stores in A431 cells. Biophys J 67(1):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kiselyov KI, Semyonova SB, Mamin AG, Mozhayeva GN (1999) Miniature Ca2+ channels in excised plasma-membrane patches: activation by IP3. Pflugers Arch 437(2):305–314

    Article  CAS  PubMed  Google Scholar 

  64. Trepakova ES, Gericke M, Hirakawa Y, Weisbrod RM, Cohen RA, Bolotina VM (2001) Properties of a native cation channel activated by Ca2+ store depletion in vascular smooth muscle cells. J Biol Chem 276(11):7782–7790

    Article  CAS  PubMed  Google Scholar 

  65. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280(2):H746–H755

    CAS  PubMed  Google Scholar 

  66. Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca(2+)-permeable cation currents are activated by internal Ca(2+)-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200(2):93–104

    Article  CAS  PubMed  Google Scholar 

  67. To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY (2010) Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca(2+) current in liver cells. Arch Biochem Biophys 495(2):152–158

    Article  CAS  PubMed  Google Scholar 

  68. Hopf FW, Reddy P, Hong J, Steinhardt RA (1996) A capacitative calcium current in cultured skeletal muscle cells is mediated by the calcium-specific leak channel and inhibited by dihydropyridine compounds. J Biol Chem 271(37):22358–22367

    Article  CAS  PubMed  Google Scholar 

  69. Putney JW Jr (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34(4–5):339–344

    Article  CAS  PubMed  Google Scholar 

  70. Fomina AF, Nowycky MC (1999) A current activated on depletion of intracellular Ca2+ stores can regulate exocytosis in adrenal chromaffin cells. J Neurosci 19(10):3711–3722

    CAS  PubMed  Google Scholar 

  71. Bird GS, Putney JW Jr (2005) Capacitative calcium entry supports calcium oscillations in human embryonic kidney cells. J Physiol 562(Pt 3):697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wedel B, Boyles RR, Putney JW Jr, Bird GS (2007) Role of the store-operated calcium entry proteins Stim1 and Orai1 in muscarinic cholinergic receptor-stimulated calcium oscillations in human embryonic kidney cells. J Physiol 579(Pt 3):679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu S, Cioffi EA, Alvarez D, Sayner SL, Chen H, Cioffi DL, King J, Creighton JR, Townsley M, Goodman SR, Stevens T (2005) Essential role of a Ca2+ -selective, store-operated current (ISOC) in endothelial cell permeability: determinants of the vascular leak site. Circ Res 96(8):856–863

    Article  CAS  PubMed  Google Scholar 

  74. Dominguez-Rodriguez A, Diaz I, Rodriguez-Moyano M, Calderon-Sanchez E, Rosado JA, Ordonez A, Smani T (2012) Urotensin-II signaling mechanism in rat coronary artery: role of STIM1 and Orai1-dependent store operated calcium influx in vasoconstriction. Arterioscler Thromb Vasc Biol 32(5):1325–1332

    Article  CAS  PubMed  Google Scholar 

  75. Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113(9):2056–2063

    Article  CAS  PubMed  Google Scholar 

  76. Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490(2):137–144

    Article  CAS  PubMed  Google Scholar 

  77. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  78. Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A 104(44):17542–17547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126(Pt 2):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21(4):457–461

    Article  CAS  PubMed  Google Scholar 

  83. Pandol SJ, Schoeffield-Payne MS (1990) Cyclic GMP mediates the agonist-stimulated increase in plasma membrane calcium entry in the pancreatic acinar cell. J Biol Chem 265(22):12846–12853

    CAS  PubMed  Google Scholar 

  84. Rosado JA, Porras T, Conde M, Sage SO (2001) Cyclic nucleotides modulate store-mediated calcium entry through the activation of protein-tyrosine phosphatases and altered actin polymerization in human platelets. J Biol Chem 276(19):15666–15675

    Article  CAS  PubMed  Google Scholar 

  85. Alvarez J, Montero M, Garcia-Sancho J (1992) Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores. FASEB J 6(2):786–792

    CAS  PubMed  Google Scholar 

  86. Ben Amor N, Redondo PC, Bartegi A, Pariente JA, Salido GM, Rosado JA (2006) A role for 5,6-epoxyeicosatrienoic acid in calcium entry by de novo conformational coupling in human platelets. J Physiol 570(Pt 2):309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sargeant P, Farndale RW, Sage SO (1993) The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+ entry in human platelets. FEBS Lett 315(3):242–246

    Article  CAS  PubMed  Google Scholar 

  88. Sargeant P, Farndale RW, Sage SO (1993) ADP- and thapsigargin-evoked Ca2+ entry and protein-tyrosine phosphorylation are inhibited by the tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate in fura-2-loaded human platelets. J Biol Chem 268(24):18151–18156

    CAS  PubMed  Google Scholar 

  89. Rosado JA, Graves D, Sage SO (2000) Tyrosine kinases activate store-mediated Ca2+ entry in human platelets through the reorganization of the actin cytoskeleton. Biochem J 351(Pt 2):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268(28):20737–20740

    CAS  PubMed  Google Scholar 

  91. Bird GS, Putney JW Jr (1993) Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem 268(29):21486–21488

    CAS  PubMed  Google Scholar 

  92. Rosado JA, Sage SO (2000) Farnesylcysteine analogues inhibit store-regulated Ca2+ entry in human platelets: evidence for involvement of small GTP-binding proteins and actin cytoskeleton. Biochem J 347(Pt 1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vaca L (1996) Calmodulin inhibits calcium influx current in vascular endothelium. FEBS Lett 390(3):289–293

    Article  CAS  PubMed  Google Scholar 

  94. Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364(6440):809–814

    Article  CAS  PubMed  Google Scholar 

  95. Csutora P, Zarayskiy V, Peter K, Monje F, Smani T, Zakharov SI, Litvinov D, Bolotina VM (2006) Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+ -independent phospholipase A2beta-mediated pathway. J Biol Chem 281(46):34926–34935

    Article  CAS  PubMed  Google Scholar 

  96. Irvine RF, Moor RM (1987) Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate. Biochem Biophys Res Commun 146(1):284–290

    Article  CAS  PubMed  Google Scholar 

  97. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates – a possible mechanism. FEBS Lett 263(1):5–9

    Article  CAS  PubMed  Google Scholar 

  98. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 96(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M, Zorzato F (2004) Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion. J Cell Biol 166(4):537–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396(6710):478–482

    Article  CAS  PubMed  Google Scholar 

  101. Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4(3):423–429

    Article  CAS  PubMed  Google Scholar 

  102. Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98(4):475–485

    Article  CAS  PubMed  Google Scholar 

  103. Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6(8):709–720

    Article  CAS  PubMed  Google Scholar 

  104. Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279(8):7241–7246

    Article  CAS  PubMed  Google Scholar 

  105. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15(4):635–646

    Article  CAS  PubMed  Google Scholar 

  106. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98(4):487–499

    Article  CAS  PubMed  Google Scholar 

  107. Rosado JA, Jenner S, Sage SO (2000) A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. J Biol Chem 275(11):7527–7533

    Article  CAS  PubMed  Google Scholar 

  108. Rosado JA, Rosenzweig I, Harding S, Sage SO (2001) Tumor necrosis factor-alpha inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line HepG2. Am J Physiol Cell Physiol 280(6):C1636–C1644

    CAS  PubMed  Google Scholar 

  109. Redondo PC, Lajas AI, Salido GM, Gonzalez A, Rosado JA, Pariente JA (2003) Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem J 370(Pt 1):255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosado JA, Sage SO (2000) The actin cytoskeleton in store-mediated calcium entry. J Physiol 526(Pt 2):221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xie Q, Zhang Y, Zhai C, Bonanno JA (2002) Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem 277(19):16559–16566

    Article  CAS  PubMed  Google Scholar 

  112. Wang JP, Hsu MF, Ko HH, Lin CN (2004) Stimulation of cellular free Ca2+ elevation and inhibition of store-operated Ca2+ entry by kazinol B in neutrophils. Naunyn Schmiedebergs Arch Pharmacol 370(6):500–509

    Article  CAS  PubMed  Google Scholar 

  113. Gratschev D, Blom T, Bjorklund S, Tornquist K (2004) Phosphatase inhibition reveals a calcium entry pathway dependent on protein kinase A in thyroid FRTL-5 cells: comparison with store-operated calcium entry. J Biol Chem 279(48):49816–49824

    Article  CAS  PubMed  Google Scholar 

  114. Kachoei BA, Knox RJ, Uthuza D, Levy S, Kaczmarek LK, Magoski NS (2006) A store-operated Ca(2+) influx pathway in the bag cell neurons of Aplysia. J Neurophysiol 96(5):2688–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Henquin JC, Mourad NI, Nenquin M (2012) Disruption and stabilization of beta-cell actin microfilaments differently influence insulin secretion triggered by intracellular Ca2+ mobilization or store-operated Ca2+ entry. FEBS Lett 586(1):89–95

    Article  CAS  PubMed  Google Scholar 

  116. Bakowski D, Glitsch MD, Parekh AB (2001) An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J Physiol 532(Pt 1):55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Redondo PC, Harper MT, Rosado JA, Sage SO (2006) A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood 107(3):973–979

    Article  CAS  PubMed  Google Scholar 

  118. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281(34):24979–24990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8(7):771–773

    Article  CAS  PubMed  Google Scholar 

  121. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  122. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281(30):20661–20665

    Article  CAS  PubMed  Google Scholar 

  123. Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J Biol Chem 283(37):25296–25304

    Article  CAS  PubMed  Google Scholar 

  124. Galan C, Dionisio N, Smani T, Salido GM, Rosado JA (2011) The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 82(4):400–410

    Article  CAS  PubMed  Google Scholar 

  125. Jardin I, Lopez JJ, Redondo PC, Salido GM, Rosado JA (2009) Store-operated Ca2+ entry is sensitive to the extracellular Ca2+ concentration through plasma membrane STIM1. Biochim Biophys Acta 1793(10):1614–1622

    Article  CAS  PubMed  Google Scholar 

  126. Harper AG, Sage SO (2007) A key role for reverse Na+/Ca2+ exchange influenced by the actin cytoskeleton in store-operated Ca2+ entry in human platelets: evidence against the de novo conformational coupling hypothesis. Cell Calcium 42(6):606–617

    Article  CAS  PubMed  Google Scholar 

  127. Giurisato E, Gamberucci A, Ulivieri C, Marruganti S, Rossi E, Giacomello E, Randazzo D, Sorrentino V (2014) The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE). Mol Biol Cell 25(11):1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16(1):24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134(3):771–782

    Article  CAS  PubMed  Google Scholar 

  130. Parker NJ, Begley CG, Smith PJ, Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37(2):253–256

    Article  CAS  PubMed  Google Scholar 

  131. Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57(20):4493–4497

    CAS  PubMed  Google Scholar 

  132. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481(1):147–155

    Article  CAS  PubMed  Google Scholar 

  133. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357(Pt 3):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Williams RT, Senior PV, Van Stekelenburg L, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim Biophys Acta 1596(1):131–137

    Article  CAS  PubMed  Google Scholar 

  135. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  137. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443(7108):226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079

    Article  CAS  PubMed  Google Scholar 

  139. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174(6):815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  142. Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 105(36):13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586(2):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    Article  CAS  PubMed  Google Scholar 

  147. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287

    Article  CAS  PubMed  Google Scholar 

  148. Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258(5530):84–87

    Article  CAS  PubMed  Google Scholar 

  149. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323

    Article  CAS  PubMed  Google Scholar 

  150. Hardie RC, Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16(9):371–376

    Article  CAS  PubMed  Google Scholar 

  151. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92(21):9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373(3):193–198

    Article  CAS  PubMed  Google Scholar 

  153. Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001 (90):re1

    Google Scholar 

  154. Vannier B, Zhu X, Brown D, Birnbaumer L (1998) The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273(15):8675–8679

    Article  CAS  PubMed  Google Scholar 

  155. Bennett V (1992) Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem 267(13):8703–8706

    CAS  PubMed  Google Scholar 

  156. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595–598

    Article  CAS  PubMed  Google Scholar 

  157. Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11(2):82–88

    Article  CAS  PubMed  Google Scholar 

  158. Engelke M, Friedrich O, Budde P, Schafer C, Niemann U, Zitt C, Jungling E, Rocks O, Luckhoff A, Frey J (2002) Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Lett 523(1–3):193–199

    Article  CAS  PubMed  Google Scholar 

  159. Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Luckhoff A, Schultz G (1996) Cloning and functional expression of a human Ca2+ -permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196

    Article  CAS  PubMed  Google Scholar 

  160. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85(5):661–671

    Article  CAS  PubMed  Google Scholar 

  161. Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca(2+) influx mechanism in salivary gland cells. J Biol Chem 275(5):3403–3411

    Article  CAS  PubMed  Google Scholar 

  162. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+ -selective, store-operated Ca2+ entry pathway. FASEB J 15(10):1727–1738

    Article  CAS  PubMed  Google Scholar 

  163. Mori Y, Wakamori M, Miyakawa T, Hermosura M, Hara Y, Nishida M, Hirose K, Mizushima A, Kurosaki M, Mori E, Gotoh K, Okada T, Fleig A, Penner R, Iino M, Kurosaki T (2002) Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med 195(6):673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Almirza WH, Peters PH, van Zoelen EJ, Theuvenet AP (2012) Role of Trpc channels, Stim1 and Orai1 in PGF(2alpha)-induced calcium signaling in NRK fibroblasts. Cell Calcium 51(1):12–21

    Article  CAS  PubMed  Google Scholar 

  165. Lopez E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC (2013) FKBP52 is involved in the regulation of SOCE channels in the human platelets and MEG 01 cells. Biochim Biophys Acta 1833(3):652–662

    Article  CAS  PubMed  Google Scholar 

  166. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277(44):42157–42163

    Article  CAS  PubMed  Google Scholar 

  167. Vannier B, Peyton M, Boulay G, Brown D, Qin N, Jiang M, Zhu X, Birnbaumer L (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96(5):2060–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272(47):29672–29680

    Article  CAS  PubMed  Google Scholar 

  169. Brechard S, Melchior C, Plancon S, Schenten V, Tschirhart EJ (2008) Store-operated Ca2+ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes. Cell Calcium 44(5):492–506

    Article  CAS  PubMed  Google Scholar 

  170. Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783(1):84–97

    Article  CAS  PubMed  Google Scholar 

  171. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287(6):C1709–C1716

    Article  CAS  PubMed  Google Scholar 

  173. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci U S A 103(11):4040–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  175. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  CAS  PubMed  Google Scholar 

  176. Rao JN, Rathor N, Zou T, Liu L, Xiao L, Yu TX, Cui YH, Wang JY (2010) STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding. Am J Physiol Cell Physiol 299(3):C579–C588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L, Cheng KT, Ambudkar IS, Muallem S (2011) Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic 12(2):232–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ng LC, McCormack MD, Airey JA, Singer CA, Keller PS, Shen XM, Hume JR (2009) TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587(Pt 11):2429–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp Biol Med (Maywood) 234(6):673–682

    Article  CAS  Google Scholar 

  180. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 283(25):17333–17340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels (Austin) 2(6):401–403

    Article  Google Scholar 

  185. Sampieri A, Zepeda A, Saldaña C, Salgado A, Vaca L (2008) STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 44(5):479–491

    Article  CAS  Google Scholar 

  186. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by MINECO (Grant BFU2013-45564-C2-1-P) and Gobierno de Extremadura-FEDER (GR15029). JJL and LA are supported by Juan de la Cierva Program (JCI-2012-12934) and MINECO fellowship BES-2011-043356, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Rosado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albarran, L., Lopez, J.J., Salido, G.M., Rosado, J.A. (2016). Historical Overview of Store-Operated Ca2+ Entry. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_1

Download citation

Publish with us

Policies and ethics