Skip to main content

Intelligent Radar Signal Recognition and Classification

  • Chapter
  • First Online:
Recent Advances in Computational Intelligence in Defense and Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 621))

Abstract

This chapter investigates a classification problem for timely and reliable identification of radar signal emitters by implementing and following a neural network (NN) based approach. A large data set of intercepted generic radar signals, containing records of their pulse train characteristics (such as operational frequencies, modulation types, pulse repetition intervals, scanning period, etc.), is used for this research. Due to the nature of the available signals, the data entries consist of a mixture of continuous, discrete and categorical data, with a considerable number of records containing missing values. To solve the classification problem, two separate approaches are investigated, implemented, tested and validated on a number of case studies. In the first approach, a listwise deletion is used to clean the data of samples containing missing values and then feed-forward neural networks are employed for the classification task. In the second one, a multiple imputation (MI) model-based method for dealing with missing data (by producing confidence intervals for unbiased estimates without loss of statistical power, i.e. by using all the available samples) is investigated. Afterwards, a feedforward backpropagation neural network is trained to solve the signal classification problem. Each of the approaches is tested and validated on a number of case studies and the results are evaluated and critically compared. The rest of the chapter is organised as follows: the next section (Introduction and Background) presents a review of related literature and relevant background knowledge on the investigated topic. In Sect. 2 (Data Analysis), a broader formulation of the problem is provided and a deeper analysis of the available data set is made. Different statistical transformation techniques are discussed and a multiple imputation method for dealing with missing data is introduced in Sect. 3 (Data Pre-Processing). Several NN topologies, training parameters, input and output coding, and data transformation techniques for facilitating the learning process are tested and evaluated on a set of case studies in Sect. 4 (Results and Discussion). Finally, Sect. 5 (Conclusion) summarises the results and provides ideas for further extension of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards, M.A.: Fundamentals of Radar Signal Processing. Tata McGraw-Hill Education, New Delhi (2005)

    Google Scholar 

  2. Dickmann, J., Appenrodt N., Brenk, C.: Making Bertha see. IEEE Spectrum, 41–45 (2014)

    Google Scholar 

  3. Mure-Dubois, J., Vincent, F., Bonacci, D.: Sonar and radar SAR processing for parking lot detection. In: Proceedings of the IEEE International Radar Symposium (IRS), pp. 471–476 (2011)

    Google Scholar 

  4. Skolnik, M.I.: Introduction to Radar Systems. McGraw Hill, Boston (2001)

    Google Scholar 

  5. Lazarus, M.: Radar everywhere. IEEE Spectr. 52(2), 52–59 (2015)

    Article  Google Scholar 

  6. Cumming, I.G., Wong, F.H.: Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, Norwood (2005)

    Google Scholar 

  7. Krieger, G., Younis, M., Gebert, N., Huber, S., Bordoni, F., Patyuchenko, A., Moreira, A.: Advanced concepts for high-resolution wide-swath SAR imaging. In: 8th European Conference on Synthetic Aperture Radar (EUSAR), pp. 1–4. VDE (2010)

    Google Scholar 

  8. Zhai, S., Jiang, T.: A new sense-through-foliage target recognition method based on hybrid differential evolution and self-adaptive particle swarm optimization-based support vector machine. Neurocomput. 149(1), 573–584 (2015)

    Article  Google Scholar 

  9. Brunner, D., Lemoine, G., Bruzzone, L.: Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans. Geosci. Remote Sens. 48(5), 2403–2420 (2010)

    Article  Google Scholar 

  10. Arcone, S.A., Spikes, V.B., Hamilton, G.S.: Stratigraphic variation within polar firn caused by differential accumulation and ice flow: interpretation of a 400 MHz short-pulse radar profile from West Antarctica. J. Glaciol. 51(174), 407–422 (2005)

    Article  Google Scholar 

  11. Storvold, R., Malnes, E., Larsen, Y., Høgda, K., Hamran, S., Mueller, K., Langley, K.: SAR remote sensing of snow parameters in Norwegian areas—Current status and future perspective. J. Electromagn. Waves Appl. 20(13), 1751–1759 (2006)

    Article  Google Scholar 

  12. Evans, D.L., Alpers, W., Cazenave, A., Elachi, C., Farr, T., Glackin, D., Holt, B., Jones, L., Liu, W.T., McCandless, W.: Seasat—a 25-year legacy of success. Remote Sens. Environ. 94(3), 384–404 (2005)

    Article  Google Scholar 

  13. Secades, C., O’Connor, B., Brown, C., Walpole, M.: Earth observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress towards the Aichi Biodiversity Targets, CBD Technical Series 72, (2014)

    Google Scholar 

  14. Persico, R.: Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing. Wiley, New York (2014)

    Book  Google Scholar 

  15. Goodman, D., Piro, S.: GPR Remote Sensing in Archaeology. Springer, New York (2013)

    Book  Google Scholar 

  16. Sambuelli, L., Bohm, G., Capizzi, P., Cardarelli, E., Cosentino, P.: Comparison between GPR measurements and ultrasonic tomography with different inversion algorithms: an application to the base of an ancient Egyptian sculpture. J. Geophys. Eng. 8(3), 106–116 (2011)

    Article  Google Scholar 

  17. Francke, J.: Applications of GPR in mineral resource evaluations. In: Proceedings of the 13th IEEE International Conference on Ground Penetrating Radar (GPR), pp. 1–5 (2010)

    Google Scholar 

  18. Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B., Vanclooster, M.: Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 42(11), 2555–2568 (2004)

    Article  Google Scholar 

  19. Soldovieri, F., Prisco, G., Persico, R.: A strategy for the determination of the dielectric permittivity of a lossy soil exploiting GPR surface measurements and a cooperative target. J. Appl. Geophys. 67(4), 288–295 (2009)

    Article  Google Scholar 

  20. Peabody, J.E., Charvat, G.L., Goodwin, J., Tobias, M.: Through-wall imaging radar. Lincoln Lab. J. 19(1), 62–72 (2012)

    Google Scholar 

  21. Pettinelli, E., Di Matteo, A., Mattei, E., Crocco, L., Soldovieri, F., Redman, J.D., Annan, A.P.: GPR response from buried pipes: Measurement on field site and tomographic reconstructions. IEEE Trans. Geosci. Remote Sens. 47(8), 2639–2645 (2009)

    Article  Google Scholar 

  22. Slob, E., Sato, M., Olhoeft, G.: Surface and borehole ground-penetrating-radar developments. Geophysics 75(5), 75A103–175A120 (2010)

    Article  Google Scholar 

  23. IEEE Standard Letter Designations for Radar-Frequency Bands. Standard 521–2002 (2003). doi:10.1109/IEEESTD.2003.94224

  24. Capraro, G.T., Farina, A., Griffiths, H., Wicks, M.C.: Knowledge-based radar signal and data processing: a tutorial review. IEEE Sig. Process. Mag. 23(1), 18–29 (2006)

    Article  Google Scholar 

  25. Galejs, R.J.: Volume surveillance radar frequency selection. In: Proceedings of the IEEE International Radar Conference, pp. 187–192 (2000)

    Google Scholar 

  26. Johnsen, T., Olsen, K.E.: Bi-and multistatic radar. DTIC Document (2006)

    Google Scholar 

  27. Schleher, D.C.: Electronic warfare in the information age. Artech House, Boston, London (1999)

    Google Scholar 

  28. Sciortino, J.C.: Autonomous ESM systems. Naval Eng. J. 109(6), 73–84 (1997)

    Article  Google Scholar 

  29. Wang, Z., Zhang, D., Bi, D., Wang, S.: Multiple-parameter radar signal sorting using support vector clustering and similitude entropy index. Circ. Syst. Sig. Process. 33(6), 1985–1996 (2014)

    Article  Google Scholar 

  30. Granger, E., Rubin, M.A., Grossberg, S., Lavoie, P.: A what-and-where fusion neural network for recognition and tracking of multiple radar emitters. Neural Netw. 14(3), 325–344 (2001)

    Article  Google Scholar 

  31. D’Agostino, S., Foglia, G., Pistoia, D.: Specific emitter identification: Analysis on real radar signal data. In: Proceedings of the IEEE European Radar Conference (EuRAD), pp. 242–245 (2009)

    Google Scholar 

  32. Feng, B., Lin, Y.: Radar signal recognition based on manifold learning method. Int. J. Control Autom. 7(12), 399–440 (2014)

    Article  Google Scholar 

  33. Li, J., Ying, Y.: Radar signal recognition algorithm based on entropy theory. In: Proceedings of the 2nd IEEE International Conference on Systems and Informatics (ICSAI 2014), pp. 718–723 (2014)

    Google Scholar 

  34. Zhang, G., Hu, L., Jin, W.: A novel approach for radar emitter signal recognition. In: Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 817–820 (2004)

    Google Scholar 

  35. Lunden, J., Koivunen, V.: Automatic radar waveform recognition. IEEE J. Sel. Top. Sig. Process. 1(1), 124–136 (2007)

    Article  Google Scholar 

  36. Hassan, H.: A new algorithm for radar emitter recognition. In: Proceedings of the 3rd IEEE International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 1097–1101 (2003)

    Google Scholar 

  37. Liu, H.-J., Liu, Z., Jiang, W.-L., Zhou, Y.-Y.: Approach based on combination of vector neural networks for emitter identification. IET Sig. Proc. 4(2), 137–148 (2010)

    Article  Google Scholar 

  38. Ting, C., Wei, G., Bing, S.: A new radar emitter recognition method based on pulse sample figure. In: Proceedings of the 8th IEEE International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1902–1905 (2011)

    Google Scholar 

  39. Wang, L., Ji, H., Shi, Y.: Feature extraction and optimization of representative-slice in ambiguity function for moving radar emitter recognition. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2246–2249 (2010)

    Google Scholar 

  40. Zeng, Y., Li, O.: A new algorithm for signal emitter recognition. In: Proceedings of the IEEE International Conference on Image Analysis and Signal Processing (IASP), pp. 446–449 (2010)

    Google Scholar 

  41. Pang, J., Lin, Y., Xu, X.: The improved radial source recognition algorithm based on fractal theory and neural network theory. Int. J. Hybrid Inf. Technol. 7(2), 397–402 (2014)

    Article  Google Scholar 

  42. Li, J., Ying, Y.: Radar signal recognition algorithm based on entropy theory. In: Proceedings of the 2nd IEEE International Conference on Systems and Informatics (ICSAI), pp. 718–723 (2014)

    Google Scholar 

  43. Ripley, B.D.: Pattern Recognition and Neural Networks (2008)

    Google Scholar 

  44. Kamgar-Parsi, B., Kamgar-Parsi, B., Sciortino Jr., J.C.: Automatic Data Sorting Using Neural Network Techniques. DTIC Document (1996)

    Google Scholar 

  45. Pape, D.R., Anderson, J.A., Carter, J.A., Wasilousky, P.A.: Advanced signal waveform classifier. In: Proceedings of the 8th Optical Technology for Microwave Applications, pp. 162–169 (1997)

    Google Scholar 

  46. Ince, T.: Polarimetric SAR image classification using a radial basis function neural network. PIERS 41(4), 636–646 (2010)

    MATH  Google Scholar 

  47. Vicen-Bueno, R., Carrasco-Álvarez, R., Rosa-Zurera, M., Nieto-Borge, J.C., Jarabo-Amores, M.-P.: Artificial neural network-based clutter reduction systems for ship size estimation in maritime radars. EURASIP J. Adv. Sig. Process. 9(1), 1–15 (2010)

    Article  Google Scholar 

  48. Anjaneyulu, L., Sarma, N., Murthy, N.: Identification of LPI radar signals by higher order spectra and neural network techniques. Int. J. Inf. Commun. Technol. 2(1), 142–155 (2009)

    Google Scholar 

  49. Ibrahim, N., Abdullah, R.R., Saripan, M.: Artificial neural network approach in radar target classification. J. Comput. Sci. 5(1), 23 (2009)

    Article  Google Scholar 

  50. Yin, Z., Yang, W., Yang, Z., Zuo, L., Gao, H.: A study on radar emitter recognition based on SPDS neural network. Inf. Technol. J. 10(4), 883–888 (2011)

    Article  Google Scholar 

  51. Zhang, Z.-C., Guan, X., He, Y.: Study on radar emitter recognition signal based on rough sets and RBF neural network. In: Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, pp. 1225–1230 (2009)

    Google Scholar 

  52. Peipei, D., Hui, L.: The radar target recognition research based on improved neural network algorithm. In: Proceedings of the Fifth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), pp. 1074–1077 (2014)

    Google Scholar 

  53. Chen, S., Cowan, C.F., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  54. Shieh, C.-S., Lin, C.-T.: A vector neural network for emitter identification. IEEE Trans. Antennas Propag. 50(8), 1120–1127 (2002)

    Article  Google Scholar 

  55. Lin, C.-M., Chen, Y.-M., Hsueh, C.-S.: A self-organizing interval type-2 fuzzy neural network for radar emitter identification. Int. J. Fuzzy Syst. 16(1), 20 (2014)

    Google Scholar 

  56. Liu, J., Lee, J.P., Li, L., Luo, Z.-Q., Wong, K.M.: Online clustering algorithms for radar emitter classification. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1185–1196 (2005)

    Article  Google Scholar 

  57. Li, L., Ji, H., Wang, L.: Specific radar emitter recognition based on wavelet packet transform and probabilistic SVM. In: Proceedings of the IEEE International Conference on Information and Automation (ICIA), pp. 1308–1313 (2009)

    Google Scholar 

  58. Ting, C., Jingqing, L., Bing, S.: Research on rough set-neural network and its application in radar signal recognition. In: Proceedings of the 8th International Conference on Electronic Measurement and Instruments (ICEMI), pp. 764–768 (2007)

    Google Scholar 

  59. Azimi-Sadjadi, M.R., Yao, D., Huang, Q., Dobeck, G.J.: Underwater target classification using wavelet packets and neural networks. IEEE Trans. Neural Netw. 11(3), 784–794 (2000)

    Article  Google Scholar 

  60. Lee, S.-J., Choi, I.-S., Cho, B., Rothwell, E.J., Temme, A.K.: Performance enhancement of target recognition using feature vector fusion of monostatic and bistatic radar. Prog. Electromagnet. Res. 144, 291–302 (2014)

    Article  Google Scholar 

  61. Baraldi, A.N., Enders, C.K.: An introduction to modern missing data analyses. J. Sch. Psychol. 48(1), 5–37 (2010)

    Article  Google Scholar 

  62. Enders, C.K.: Applied Missing Data Analysis. Guilford Press, New York (2010)

    Google Scholar 

  63. Graham, J.W.: Missing data analysis: making it work in the real world. Annu. Rev. Psychol. 60(1), 549–576 (2009)

    Article  Google Scholar 

  64. Horton, N.J., Lipsitz, S.R.: Multiple imputation in practice: comparison of software packages for regression models with missing variables. Am. Stat. 55(3), 244–254 (2001)

    Article  MathSciNet  Google Scholar 

  65. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York (2002)

    Book  MATH  Google Scholar 

  66. Osborne, J.W., Overbay, A.: Best practices in data cleaning. Sage, Thousand Oaks (2012)

    Google Scholar 

  67. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)

    Google Scholar 

  68. Verboven, S., Branden, K.V., Goos, P.: Sequential imputation for missing values. Comput. Biol. Chem. 31(5), 320–327 (2007)

    Article  MATH  Google Scholar 

  69. Morring Jr., F., Perrett, B.: L-band SAR Satellite May Help JAXA’s New Military Job, Aviation Week & Space Technology (2014)

    Google Scholar 

  70. O’Reilly, D., Bowring, N., Harmer, S.: Signal processing techniques for concealed weapon detection by use of neural networks. In: IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1–4 (2012)

    Google Scholar 

  71. Lee, J.-H., Choi, I.-S., Kim, H.-T.: Natural frequency-based neural network approach to radar target recognition. IEEE Trans. Sig. Process. 51(12), 3191–3197 (2003)

    Article  MathSciNet  Google Scholar 

  72. Khairnar, D., Merchant, S., Desai, U.: Radar signal detection in non-gaussian noise using RBF neural network. J. Comput. 3(1), 32–39 (2008)

    Article  Google Scholar 

  73. Briones, J., Flores, B., Cruz-Cano, R.: Multi-mode radar target detection and recognition using neural networks. Int. J. Adv. Rob. Syst. 9(177), 1–9 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Jordanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jordanov, I., Petrov, N. (2016). Intelligent Radar Signal Recognition and Classification. In: Abielmona, R., Falcon, R., Zincir-Heywood, N., Abbass, H. (eds) Recent Advances in Computational Intelligence in Defense and Security. Studies in Computational Intelligence, vol 621. Springer, Cham. https://doi.org/10.1007/978-3-319-26450-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26450-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26448-6

  • Online ISBN: 978-3-319-26450-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics