Skip to main content

Agrobiodiversity: The Importance of Inventories in the Assessment of Crop Diversity and Its Time and Spatial Changes

  • Chapter
  • First Online:
Genetic Diversity and Erosion in Plants

Abstract

In general, the absence of detailed knowledge of world biodiversity prevents the application of the methodological tools that could successfully assist in biodiversity conservation. Inventories are seen as a first step to assessing the biodiversity with respect to its richness and distribution patterns and to monitor its changes. Nevertheless, currently no comprehensive global inventory of species diversity exists. Our knowledge of biodiversity encompasses only 20 % of the total estimated number of species. Similar gaps could also be identified in the current understanding of crop diversity with a particular emphasis on the intraspecific diversity where a wide and comprehensive inventory is urgently required. Surveys are pivotal for the accumulation of knowledge required to populate agrobiodiversity inventories that are essential tools for creating effective mechanisms to monitor changes in the crop diversity and to estimate genetic erosion of predominantly threatened components of diversity, i.e., landraces. Our work aims to review the current state of agrobiodiversity inventories with particular emphasis on crop species and their intraspecific diversity. The complexity of crop diversity and the limitations of our knowledge with that respect are discussed. The need of inventorying and surveying at the species and below-species levels is reviewed. The ambiguity of landraces definition, which is a major component of intraspecific crop diversity, along with the distinct needs to design and execute their inventory strategies is debated. Crop diversity has a prospective use for agriculture and food production sustainability, crop improvement or crop adaptation to climatic changes, and therefore needs to be inventoried and protected against erosion and extinction. Finally, we present some inceptive attempts to advance ex situ and in situ landrace inventories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abberton MT, Warren JM (2006) Genetic erosion and genetic ‘pollution’ in forage species and their wild relatives. In: Ford-Lloyd BV, Dias SR and Bettencourt E (eds) Genetic erosion and pollution assessment methodologies. Proceedings of PGR Forum Workshop 5, Terceira Island, Autonomous Region of the Azores, Portugal, 8–11 Sept 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum, by Bioversity International, Rome, Italy, 100 p, pp 55–59

    Google Scholar 

  • Almekinders C, de Boef W (1999) The challenge of collaboration in the management of crop genetic diversity. ILEIA Newslett 5–7

    Google Scholar 

  • Alonso LE, Alonso A, Schulenberg TS, Dallmeier F (2001) Biological and social assessments of the Cordillera de Vilcabamba, Peru. Conservation International, Washington, D.C.

    Google Scholar 

  • Annicchiarico P, Pecetti L (2003) Developing a tall durum wheat plant type for semi-arid, Mediterranean cereal-livestock farming systems. Field Crops Res 80:157–164

    Article  Google Scholar 

  • Antofie MA, Camelia Sand MP, Ciotea G, Iagraru P (2010) Data sheet model for developing a red list regarding crop landraces in Romania. Ann Food Sci Technol 11(1):45–49

    Google Scholar 

  • Aravindakshan S, Sherief AK (2010) Connotation of minor millet biodiversity and indirect payments in tribal homesteads in the backdrop of climate change. Munich Personal RePEc Archive, Dresden University of Technology, Germany, Kerala Agricultural University, India. Online at http://mpra.ub.uni-muenchen.de/28136/ MPRA Paper No. 28136, posted 18. January 2011 15:23 UTC

  • Arnaud E, Dias S, Mackay M, Cyr P, Gardner C, Bretting P, Kinard G, Guarino L (2010) Chapter 11 a global portal enabling worldwide access to information on conservation and use of biodiversity for food and agriculture. In: Maurer L, Tochtermann K (eds) Information and communication technologies for biodiversity conservation and agriculture. Shaker Verlag, Aachen, pp 175–185

    Google Scholar 

  • Bardsley D, Thomas I (2005) Valuing local wheat landraces for agrobiodiversity conservation in Northeast Turkey. Agric Ecosyst Environ 106:407–412

    Article  Google Scholar 

  • Bettencourt E (2008) Conservation and utilization of autochthonous PGRFA. National workshop—the use of PGRFA aiming at exchange information at national level. Project “strengthening sustainable use of plant genetic resources for food and agriculture in Albania” FAO—TCP/ALB/3102D. Materials presented in workshop, Lushnje, Albania, MBUMK/MAFCP, Tirane, pp 55–72

    Google Scholar 

  • Bettencourt E, Ford-Lloyd BV, Dias S (2008) Genetic erosion and genetic pollution of crop wild relatives: the PGR Forum perspective and achievements. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (eds) Crop wild relative conservation and use. CAB International. ISBN 978 1 84593 099 8. Chap. 16, pp 277–286

    Google Scholar 

  • Bioversity International (2008) EURISCO. http://eurisco.ecpgr.org/static/index.html. Accessed 3 Dec 2008

  • Bioversity and The Christensen Fund (2009) Descriptors for farmers’ knowledge of plants. Bioversity International, Rome, Italy and The Christensen Fund, Palo Alto, California, USA

    Google Scholar 

  • Bioversity International (2014) Collecting missions. http://bioversity.github.io/geosite/. Accessed Oct 2014

  • Brookfield H, Padoch C (1994) Appreciating agrodiversity: a look at the dynamism and diversity of indigenous farming practices. Environment 36(5):8–11

    Article  Google Scholar 

  • Brookfield H, Stocking M (1999) Agrodiversity: definition, description and design. Glob Environ Change 9(2):77–80

    Article  Google Scholar 

  • Brown AHD (1999) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. International Plant Genetic Resources Institute copublished with International Development Research Centre and Lewis Publishers, Rome, pp 29–48

    Google Scholar 

  • Brown AHD (2008) Indicators of genetic diversity, genetic erosion and genetic vulnerability for plant genetic resources for food and agriculture. Thematic Background Study. http://www.fao.org/fileadmin/templates/agphome/documents/PGR/SoW2/PGRFA_Indicators_Thematic_Study.pdf

  • Brown AHD, Brubaker CL (2002) Indicators for sustainable management of plant genetic resources: how well are we doing? In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI Publishing, Wallingford, UK, pp 249–262

    Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2008) The complex origins of domesticated crops in the fertile crescent. Trends Ecol Evol 24(2):1–7

    Google Scholar 

  • Brush SB (1999) The issues of in situ conservation of crop genetic resources. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. International Plant Genetic Resources Institute co published with International Development Research Centre and Lewis Publishers, Rome, pp 3–26

    Chapter  Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2006) Defining and identifying crop landraces. Plant Genet Resour 3(3):373–384

    Article  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23(4):180–185

    Article  CAS  PubMed  Google Scholar 

  • Carbayo F, Marques AC (2011) The costs of describing the entire animal kingdom. Trends Ecol Evol 26:154–155

    Article  PubMed  Google Scholar 

  • CBD convention on biological diversity (2010) Decision X/2, the strategic plan for biodiversity 2011–2020 and the Aichi Biodiversity Targets, Nagoya, Japan. 18–29 Oct 2010 Available at http://www.cbd.int/sp/. Accessed 11 July 2014

  • Cleveland DA, Soleri D, Smith SE (1999) Farmer plant breeding from a biological perspective: implications for collaborative plant breeding. CIMMYT Economics Working Paper No.10. Mexico, D.F.: CIMMYT

    Google Scholar 

  • Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295:666–669

    Article  CAS  PubMed  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Suttonkk P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Crosby AW (1983) The Fortunate Isles. Ecological imperialism: biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge, pp 70–103

    Google Scholar 

  • Crossa J, Vencovsky R (2011) Basic sampling strategies: theory and practice. In: Guarino L, Ramanatha Rao V, Goldberg E Collecting plant genetic diversity: technical guidelines—2011 update. Bioversity International, Rome, Italy, pp 1–28

    Google Scholar 

  • Damania AB (2008) History, achievements, and current status of genetic resources conservation. Agron J 100:9–21

    Article  Google Scholar 

  • De Candolle A (1884) Origin of cultivated plants. Kegan Paul, Trench & Co. London, UK

    Google Scholar 

  • Delker C, Quint M (2011) Expression level polymorphisms: heritable traits shaping natural variation. Trends Plant Sci 16(9):481–488

    CAS  PubMed  Google Scholar 

  • Dias S (2012) Pieces of the puzzle. Trait information portal. Crop Wild Relative 6:28–30

    Google Scholar 

  • DRAPC (2014). Conservação e valorização de recursos genéticos de pomóideas regionais lista das variedades regionais existentes na colecção da Estação Agrária de Viseu. Projecto agro n.º158. http://www.drapc.min-agricultura.pt/base/documentos/variedades_regionais_pomoideas_viseu.php. Assessed 10 Sept 2014

  • DREM (2012) Estatística Agrícola da Região Autónoma da Madeira. DREM, Funchal

    Google Scholar 

  • Dogan Y (2012) Traditionally used wild edible greens in the Aegean Region of Turkey. Acta Soc Bot Pol 81(4):329–342. doi:10.5586/asbp.2012.037

    Article  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON Flora of cultivated plants (eds) Leningrad (St. Petersburg), Russia. Kolos. vol 1, 346 pp

    Google Scholar 

  • dos Santos TMM, Ganança F, Slaski JJ, Pinheiro de Carvalho MAA (2009) Morphological characterization of wheat genetic resources from the Island of Madeira, Portugal. Genet Resour Crop Evol 56:363–375

    Article  Google Scholar 

  • dos Santos TMM, Nóbrega H, Ganança JFT, Silva E, Afonso D, Gutiérres AFM, Slaski JJ, Khadem M, Pinheiro de Carvalho MAA (2012) Genetic variability of high molecular weight glutenin subunits in bread wheat from continental Portugal, Madeira and Canary Islands. Genet Resour Crop Evol 59:1377–1388

    Article  Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwin TL (1982) Tropical forest: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Esquinas-Alcazar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges’. Nat Rev Genet 6:946–953

    Article  CAS  PubMed  Google Scholar 

  • Fraser JA, Junqueira AB, Kawa NC, Moraes CP, Clement ChR (2011) Crop diversity on anthropogenic dark earths in central Amazonia. Hum Ecol 39:395–406

    Article  Google Scholar 

  • Freitas G, Ganança JFT, Nóbrega H, Nunes E, Costa G, Slaski JJ, Pinheiro de Carvalho MAA (2011) Morphological evaluation of common bean (Phaseolus vulgaris L.) diversity on the Island of Madeira. Genet Resour Crop Evol 58:861–874

    Article  Google Scholar 

  • FAO (2008) World information and early warning system (WIEWS) on plant genetic resources for food and agriculture. http://apps3.fao.org/wiews/wiewspage.jsp?i_l=EN&show=SOW. Accessed 3 Aug 2014

  • FAO (2009) International treaty on plant genetic resources for food and agriculture food and agriculture organization of the United Nations. Rome. Available http://www.fao.org/docrep/011/i0510e/i0510e00.HTM Accessed 3 Aug 2014

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture Rome. Available at http://www.fao.org/docrep/013/i1500e/i1500e00.htm. Accessed 3 Aug 2014

  • FAO/IPGRI (2002) Review and development of indicators for genetic diversity, genetic erosion and genetic vulnerability (GDEV): summary report of a joint FAO/IPGRI workshop, Rome, 11–14 Sept 2002

    Google Scholar 

  • Germeier CU, Iriondo JM, Frese L, Hohne C, Kell SP (2012) Population level information management for crop wild relatives. In: Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 256–263

    Google Scholar 

  • Gouveia CSS, Freitas G, de Brito JH, Slaski JJ, Pinheiro de Carvalho MÂA (2014) Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agric Sci 5:317–329

    Google Scholar 

  • Groombridge B, Jenkins MD (2002) World atlas of biodiversity. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, USA

    Google Scholar 

  • Guarino L, Ramanatha Rao V, Goldberg E (eds) (2011) Collecting plant genetic diversity: technical guidelines—2011 Update. Bioversity International, Rome, Italy. ISBN 978- 92-9043- 922- 6. Available online: http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=390&Itemid=557

  • Hadado TT, Rau D, Bitocchi E, Papa R (2009) Genetic diversity of barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia: comparison between the Belg and Meher growing seasons using morphological traits. Genet Resour Crop Evol 56(8):1131–1148

    Google Scholar 

  • Hambler C (2004) Conservation. Cambridge University Press, Cambridge, p 14. ISBN 0-521-80190-7

    Google Scholar 

  • Hammer K (1995) How many plant species are cultivated? In: International symposium on research and utilization of crop genetic resources, Beijing, p 6

    Google Scholar 

  • Harlan JR (1992) Crops and man. Crop Science Society of America, Madison

    Google Scholar 

  • Heywood VH (1996) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • IUCN (2013) IUCN red list version 2013.2: Table 1. Last Updated: 21 Nov 2013. Available at: http://cmsdocs.s3.amazonaws.com/summarystats/2013_2_RL_Stats_Table1.pdf. Accessed Mar 2014

  • Khera N, Kumar A, Ram J, Tewari A (2001) Plant biodiversity assessment in relation to distrurbances in mid-elevational forest of Central Himalaya, India. Trop Ecol 42:83–95

    Google Scholar 

  • Khoshbakht K, Hammer K (2008) How many plant species are cultivated? Genet Resour Crop Evol 55(7):925–928. doi:doi.org/10.1007/s10722-008

    Article  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. PNAS 111(11):4001–4006, 18 Mar 2014

    Google Scholar 

  • Klados E, Tzortzakis N (2014) Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J Soil Sci Plant Nutr 14(1):211–222. Epub 19-Ene-2014. ISSN 0718-9516

    Google Scholar 

  • Knüpffer H (ed) (1999a) Supplementum cultivarorum ad index seminum gaterslebensis 2000. IPK, Gatersleben, Germany 282 pp

    Google Scholar 

  • Knüpffer H (ed) (1999b) Index Seminum quae pro mutua commutatione offert Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben 2000. IPK, Gatersleben, Germany 131 pp

    Google Scholar 

  • Ladizinsky G (2012) Studies in oat evolution. Springer, London

    Book  Google Scholar 

  • Lawrence T (1984) Collection of crop germplasm: the first 10 years, 1974–84 IBPGR Secretariat, Rome

    Google Scholar 

  • Lecointre G, Le Guyader H (2001) Classification phylogenetique du vivant. Belin, Paris, France

    Google Scholar 

  • Louette D (1999) Traditional management of seed and genetic diversity what is a landrace? In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. International Plant Genetic Resources Institute co published with International Development Research Centre and Lewis Publishers, Rome, pp 109–142

    Google Scholar 

  • Love B, Spaner D (2007) Agro biodiversity: its value, measurement, and conservation in the context of sustainable agriculture. J Sustain Agric 31:58-32

    Article  Google Scholar 

  • Mansfeld R (1959) Vorläufiges Verzeichnis landwirtschaftlich oder gärtnerisch kultivierter Pftanzenarten (mit Ausschluss von Zierpftanzen). Kulturpftanze, Beih. 2. 659 pp

    Google Scholar 

  • Marakeby H, Badr E, Torkey H, Song Y, Leman S, Monteil CL, Heath LS, Vinatzer BA (2014) A system to automatically classify and name any individual genome-sequenced organism independently of current biological classification and nomenclature. PLoS One 9(2):e89142. doi:10.1371/journal.pone.0089142

    Article  PubMed  PubMed Central  Google Scholar 

  • Margalef DR (1958) Information theory in ecology. Genet Syst 3:36–71

    Google Scholar 

  • May R (2010) Tropical arthropod species, more or less? Science 329:41–42

    Article  CAS  PubMed  Google Scholar 

  • Maxted N, Guarino L (2006) Genetic erosion and genetic pollution of crop wild relatives. In: Ford-Lloyd BV, Dias SR, Bettencourt E (eds) Genetic erosion and pollution assessment methodologies. Proceedings of PGR Forum Workshop 5, Terceira Island, Autonomous Region of the Azores, Portugal, 8–11 Sept 2004. Published on behalf of the European Crop Wild Relative Diversity Assessment and Conservation Forum, by Bioversity International, Rome, Italy, 100 p, pp 35–45

    Google Scholar 

  • Maxted N, Scholten M, Codd R, Ford-Lloyd B (2007) Creation and use of a national inventory of crop wild relatives. Biol Conserv 140(1–2):142–159

    Article  Google Scholar 

  • Maxted N, Akparov ZI et al. (2012) Current and future threats and opportunities facing European crop wild relative and landrace diversity. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 333–354

    Google Scholar 

  • Maxted N, Lothar F, Iriondo J, Dulloo E, Ford-Lloyd BV, Pinheiro de Carvalho MAA (2012) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford

    Book  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, USA

    Google Scholar 

  • Meyer RS, Du Val AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127. doi:10.1371/journal.pbio.1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora C, Rollo A, Tittensor DT (2013) Comment on “can we name earth’s species before they go extinct?”. Science 341:237

    Article  CAS  PubMed  Google Scholar 

  • Motzo R, Giunta F (2007) The effect of breeding on the phenology of Italian durum wheats: from landraces to modern cultivars. Eur J Agron 26:462–470

    Article  Google Scholar 

  • Munster P, Wieczorek AM (2007) Potential gene flow from agricultural crops to native plant relatives in the Hawaiian Islands. Agric Ecosyst Environ 119:1–10

    Article  Google Scholar 

  • Negri V, Maxted N, Torricelli R, Heinonen M, Vetelainen M, Dias S (2012) Descriptors for web-enabled national in situ landrace inventories, 18 pp. www.pgrsecure.bham.ac.uk/sites/default/files/documents/helpdesk/LRDESCRIPTORS_PGRSECURE.pdf

  • Negri V, Pacicco L, Bodesmo M, Torricelli R (2013) The first Italian inventory of in situ maintained landraces. On CD-ROM. ISBN:978-88-6074-279-7. Morlacchi Editrice, Perugia http://vnr.unipg.it/PGRSecure/html/project.html

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro De Carvalho MAA, Rubiales D, Russell J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269

    Article  Google Scholar 

  • Nordic Genebank (2008) SESTO Gene bank documentation system. http://tor.ngb.se/sesto/index.php?scp=ngb&thm=sesto&r=437596376. Accessed

  • Ochsmann J (2004) Current problems in nomenclature and taxonomy of cultivated plants. In: Davidson CG, Trehane Acta Hort P (eds) XXVI IHC—IVth Int. Symp. Taxonomy of Cultivated Plants Ed. 634, ISHS Publication supported by Can. Int. Dev. Agency (CIDA), pp 53–61

    Google Scholar 

  • Pacicco L, Bodesmo M, Torricelli R, Negri V (2013) Progress toward an Italian conservation strategy for extant LR: the first Italian official inventory of LR. Landraces—Issue No. 2 (October 2013), p 10

    Google Scholar 

  • Papadakis JS (1929) Formes Grecques de blé. Bulletin Scientifique No. 1. Station d’Amélioration des Plantes, A Salonique

    Google Scholar 

  • Pardey PG, Skovmand B, Taba S, van Dusen ME, Wright BD (1998) The cost of conserving maize and wheat genetic resources ex-situ. In: Smale M (ed) Farmers, gene banks and crop breeding: economic analyses of diversity in wheat, maize, and rice. Kluwer Academic Press, USA, pp 35–55

    Chapter  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge

    Google Scholar 

  • Pereira HM, FerrierS WaltersM, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339:277–278. doi:10.1126/science.1229931

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro de Carvalho MAA (2014) Artigo visão: O papel do Banco de Germoplasma ISOPlexis/ Germobanco no estudo e conservação da agrodiversidade e dos recursos genéticos. In N. Veríssimo e Th. Proença (Eds). Universidade da Madeira: 25 anos. Universidade da Madeira, Funchal (in press)

    Google Scholar 

  • Pinheiro de Carvalho MAA, Ganança JFT, Abreu I, Sousa NF, dos Santos TMM, Vieira Clemente RM, Motto M (2008) Evaluation of the maize (Zea mays L.) diversity on the Archipelago of Madeira. Genet Resour Crop Evol 55:221–233

    Article  Google Scholar 

  • Pinheiro de Carvalho MAA, Bebeli P, Bettencourt E, Dias S, Dos Santos TMM, Costa G, Slaski JJ (2013) Cereal landraces genetic resources in worldwide genebanks. A review. Agron Sustain Dev 33:177–203

    Article  Google Scholar 

  • Pistorius R (1997) Scientists, plants and politics: a history of the plant genetic resources movement. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Prescott-Allen R, Prescott-Allen C (1990) How many plants feed the world? Conserv Biol 4(4):365–374

    Article  Google Scholar 

  • Qualset CO, Damania AB, Zanatta ACA, Brush SB (1997) Locally based crop plant conservation. In: Maxted N et al (eds) Plant genetic conservation: the in-situ approach. Chapman & Hall, London, pp 160–175

    Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  PubMed  Google Scholar 

  • Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. Bioversity International, Rome

    Google Scholar 

  • Rocha F, Bettencourt E, Gaspar C (2008) Genetic erosion assessment through the re-collecting of crop germplasm. Counties of Arcos de Valdevez, Melgaço, Montalegre, Ponte da Barca and Terras de Bouro (Portugal). Plant Genet Resour Newsl 154:6–13

    Google Scholar 

  • Scholten M, Green N, Campbell G, Maxted N, Ford-Lloyd B, Ambrose M, Spoor W (2009) Landrace inventory of the UK. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity technical bulletin No. 15, Bioversity International, Rome, Italy, Chap. 15, pp 161–170

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Spooner DM, Hetterscheid WLA, van den Berg RG, Brandenburg WA (2010) Plant nomenclature and taxonomy. In: Janick J (ed) Horticultural reviews, vol 28. John Wiley & Sons, Inc., Oxford, p 60

    Google Scholar 

  • Stolton S, Maxted N, Ford-Lloyd B, Kell Sh, Dudley N (2006) Arguments for protection. Food stores: using protected areas to secure crop genetic diversity. WWF—World Wide Fund for Nature, Birmingham

    Google Scholar 

  • Strajeru S, Ibanescu M, Costantinovici D (2009) Landrace inventory for Romania. In: Vetelainen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity technical bulletin No. 15, Bioversity International, Rome, Italy, Chap. 12, pp 137–142

    Google Scholar 

  • Swanson T, Goeschl T (2000) Optimal genetic resource conservation: in-situ and ex-situ. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI, Rome, pp 165–191

    Google Scholar 

  • Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 126:138–144

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice C (2005) Climate change threats to plant diversity in Europe. PNAS 102(23):8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torricelli R, Quintaliana L, Falcinelli M (2009) The ‘Farro’ (Triticum dicoccon Schrank) from Monteleone di Spoleto (Valnerina Valley, Umbria). In: Veteläinen M, Negri V, Maxted N (Eds) European landraces: on-farm conservation, management and use. Bioversity technical bulletin 15. Bioversity International, Rome, pp 183–186

    Google Scholar 

  • Tor-Björn L (2001) Biodiversity evaluation tools for European forests. Wiley-Blackwell, p 178. ISBN 978-87-16-16434-6

    Google Scholar 

  • Trehane P, Brickell CD, Baum BR, Hetterscheid WLA, Leslie AC, Mcneill J, Spongberg SA, Vrugtman F (1995) Int. code of nomenclature of cultivated plants. Regnum Veg 133:1–175

    Google Scholar 

  • United Natios (1992) Convention on biological diversity. Rio de Janeiro. Available at https://www.cbd.int/doc/legal/cbd-en.pdf/. Accessed 11 Sept 2014

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University Papers, 513 pp

    Google Scholar 

  • Varela C, Caixinhas L, Maciel GB, Vasconcellos V, Rebelo DC, Saraiva I, Telhalda A, Barradas M, Bagulho F, Teixeira Duarte JM, Pereira OP, Ferreira TJ (1995) Indigenous plant genetic resources. 11–26 in Portugal: Country Report to the FAO International Technical Conference on Plant Genetic Resources (Leipzig, 1996). Ministry of Agriculture, Oeiras, April 1995

    Google Scholar 

  • Vasconcelos JC (1933) Trigos Portugueses ou de há muito cultivados no País (subsídios para o seu estudo botânico). Boletim de Agricultura Ano I, (1–21 série), Direcção Geral de Acção Social Agrária, Lisboa

    Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Institut Botanique Appliqué et d’Améloration des Plantes, Leningrad, USSR

    Google Scholar 

  • Vavilov NI (1927) Geographical regularities in the distribution of the genes of cultivated plants. Bull Applied Bot Gen and Plant Breeding XVII(3):411–428

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Chronica Bot 13:1–366

    Google Scholar 

  • Vavilov NI (1957) Agroecological survey of the main field crops. The Academy of Sciences of the USSR, Moscow

    Google Scholar 

  • Vavilov NI (1997) Five continents. IPGRI, Rome

    Google Scholar 

  • Vellend M (2001) Do commonly-used indices of beta diversity measure species turnover? J Veg Sci 12:545–552

    Article  Google Scholar 

  • Veteläinen M, Negri V, Maxted N (2009) European landraces: on-farm conservation, management and use. Bioversity technical bulletin No 15. Bioversity International, Rome

    Google Scholar 

  • Whittacker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260

    Article  Google Scholar 

  • Wilkes HG (1993) Germplasm collections: their use, potential, social responsibility, and genetic vulnerability. In: Buxton DR et al (eds) International crop science I. Crop Science Society of America, Madison, pp 445–450

    Google Scholar 

  • Wilson EO (2000) A global biodiversity map. Science 29:2279

    Google Scholar 

  • Wood D, Lenne JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ângelo Almeida Pinheiro de Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Carvalho, M.Â.A.P., Bebeli, P.J., da Silva, A.M.B., Bettencourt, E., Slaski, J.J., Dias, S. (2016). Agrobiodiversity: The Importance of Inventories in the Assessment of Crop Diversity and Its Time and Spatial Changes. In: Ahuja, M., Jain, S. (eds) Genetic Diversity and Erosion in Plants. Sustainable Development and Biodiversity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25954-3_9

Download citation

Publish with us

Policies and ethics