Skip to main content

Validation of Decentralised Smart Contracts Through Game Theory and Formal Methods

  • Chapter
  • First Online:
Programming Languages with Applications to Biology and Security

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9465))

Abstract

Decentralised smart contracts represent the next step in the development of protocols that support the interaction of independent players without the presence of a coercing authority. Based on protocols à la BitCoin for digital currencies, smart contracts are believed to be a potentially enabling technology for a wealth of future applications. The validation of such an early developing technology is as necessary as it is complex. In this paper we combine game theory and formal models to tackle the new challenges posed by the validation of such systems.

Authors would like to thank David Zimbeck for useful discussions and for sharing information about BitHalo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This name is believed to be a pseudonym.

  2. 2.

    We stick to a quite simple vision of trading. An interesting alternative would be assuming that \(v < p\) for the seller and \(p < v\) for the buyer. In this case both would have an incentive to come to the shared consent, both increasing their wealth. The wealth preservation property would not hold. This is scope for future work.

  3. 3.

    It must be recalled that larger probabilities could hold for lesser-percentage losses, e.g. the seller could have a 0.1 probability of a 20 %. Probabilities for different losses can be determined, if of interest.

References

  1. Antonopoulos, A.: Mastering Bitcoin. O’Relly, San Francisco (2015)

    Google Scholar 

  2. Back, A.: Hashcash a denial of service counter-measure (2002). http://www.hashcash.org/papers/hashcash.pdf

  3. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages with Applications to Biology and Security - Colloquium in Honour of Pierpaolo Degano for his 65th Birthday. LNCS. Springer (2015) (to appear)

    Google Scholar 

  4. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 305–320. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Basile, D., Degano, P., Ferrari, G.-L.: Automata for analysing service contracts. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp. 34–50. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-45917-1_3

    Google Scholar 

  6. Basile, D., Degano, P., Ferrari, G.L.: A formal framework for secure and complying services. J. Supercomput. 69(1), 43–52 (2014). http://dx.doi.org/10.1007/s11227-014-1211-0

    Article  Google Scholar 

  7. BitHalo: https://bithalo.org/

  8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. BitcoinWiki: Atomic trading. https://en.bitcoin.it/wiki/atomic_cross-chain_trading

  10. BitcoinWiki: Script. https://en.bitcoin.it/wiki/script

  11. BitcoinWiki: Smart property. https://en.bitcoin.it/wiki/Smart_Property

  12. Blockchain.info: Average transaction confirmation time. https://blockchain.info/charts/avg-confirmation-time

  13. Dai, W.: b-money (1998). http://www.weidai.com/bmoney.txt

  14. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lawsky, B.M.: Bitlicense. http://www.dfs.ny.gov/legal/regulations/adoptions/dfsp200t.pdf

  19. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol. Inf. Process. Lett. 56(3), 131–133 (1995)

    Article  MATH  Google Scholar 

  20. Malinowski, D., Mazurek, L., Andrychowicz, M., Dziembowski, S.: Secure multiparty computations on bitcoin. IACR Cryptology ePrint Archive, p. 784 (2013)

    Google Scholar 

  21. Muthoo, A.: Bargaining Theory with Applications. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  23. Needham, R., Schroeder, M.: Using encryption for authentication in large networks of computers. Commun. ACM 21(12), 993–999 (1978)

    Article  MATH  Google Scholar 

  24. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  25. de Soto, H.P.: The property rights project. http://www.ild.org.pe

  26. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997). http://firstmonday.org/ojs/index.php/fm/article/view/548/469

  27. Szabo, N.: The idea of smart contracts (1997). http://szabo.best.vwh.net/smart_contracts_idea.html

  28. VV.AA: Special report bitcoin. Bloomberg Briefs (2015). http://www.bloombergbriefs.com/

  29. Zimbeck, D.: Two party double deposit trustless escrow in cryptographic networks and bitcoin (2014). https://bithalo.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bracciali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bigi, G., Bracciali, A., Meacci, G., Tuosto, E. (2015). Validation of Decentralised Smart Contracts Through Game Theory and Formal Methods. In: Bodei, C., Ferrari, G., Priami, C. (eds) Programming Languages with Applications to Biology and Security. Lecture Notes in Computer Science(), vol 9465. Springer, Cham. https://doi.org/10.1007/978-3-319-25527-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25527-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25526-2

  • Online ISBN: 978-3-319-25527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics