Skip to main content

A Combinatorial Approach to Knot Recognition

  • Conference paper
  • First Online:
Embracing Global Computing in Emerging Economies (EGC 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 514))

Included in the following conference series:

Abstract

This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition.

D. Stanovský—Partially supported by the GAČR grant 13-01832S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://en.wikipedia.org/wiki/Knot_theory.

  2. 2.

    http://www.karlin.mff.cuni.cz/~stanovsk/quandles.

References

  1. Adams, C.: The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. Amer. Math. Soc., Providence (1994)

    MATH  Google Scholar 

  2. Andruskiewitsch, N., Graña, M.: From racks to pointed Hopf algebras. Adv. Math. 178(2), 177–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae, Y.: Coloring link diagrams by Alexander Quandles. J. Knot Theory Ramifications 21(10), 1250094 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buck, D., Flapan, E. (eds.): Applications of Knot Theory. Proceedings of Symposia in Applied Mathematics. Amer. Math. Soc., Providence (2009)

    Google Scholar 

  5. Cha, J.C., Livingston, C.: KnotInfo: Table of knot invariants. http://www.indiana.edu/~knotinfo

  6. Clark, W.E., Elhamdadi, M., Saito, M., Yeatman, T.: Quandle colorings of knots and applications. J. Knot Theory Ramifications 23(6), 1450035 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, W.E., Saito, M., Vendramin, L.: Quandle coloring and cocycle invariants of composite knots and abelian extensions. http://arxiv.org/abs/1407.5803

  8. Fish, A., Lisitsa, A.: Detecting unknots via equational reasoning, I: Exploration. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 76–91. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  9. Hass, J., Lagarias, J., Pippenger, N.: The computational complexity of knot and link problems. J. ACM 46, 185–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henrich, A., Kauffman, L.: Unknotting Unknots. Am. Math. Monthly 121(5), 379–390 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hulpke, A., Stanovský, D., Vojtěchovský, P.: Connected quandles and transitive groups. To appear in J. Pure Appl. Algebra. http://arxiv.org/abs/1409.2249

  12. Joyce, D.: Classifying invariant of knots, the knot quandle. J. Pure Appl. Algebra 23, 37–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyce, D.: Simple quandles. J. Algebra 79, 307–318 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuperberg, G.: Knottedness is in NP, modulo GRH. Adv. Math. 256, 493–506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lackenby, M.: A polynomial upper bound on Reidemeister moves. To appear in Annals Math. http://arxiv.org/abs/1302.0180

  16. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. Internat. J. Algebra Comput. 16(3), 563–581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Matveev, S.V.: Distributive groupoids in knot theory. Math. USSR - Sbornik 47(1), 73–83 (1984)

    Article  MATH  Google Scholar 

  18. Nelson, S.: The combinatorial revolution in knot theory. Notices Amer. Math. Soc. 58(11), 1553–1561 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Ohtsuki, T.: Problems on Invariants of Knots and 3-manifolds. Geom. Topol. Monogr., vol. 4. Geom. Topol. Publ., Coventry (2002)

    MATH  Google Scholar 

  20. Silver, D.S.: Knot theory’s odd origins. Am. Sci. 94, 158–165 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stanovský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fish, A., Lisitsa, A., Stanovský, D. (2015). A Combinatorial Approach to Knot Recognition. In: Horne, R. (eds) Embracing Global Computing in Emerging Economies. EGC 2015. Communications in Computer and Information Science, vol 514. Springer, Cham. https://doi.org/10.1007/978-3-319-25043-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25043-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25042-7

  • Online ISBN: 978-3-319-25043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics