Skip to main content

Cerebral Aging: Implications for the Heart Autonomic Nervous System Regulation

  • Chapter
  • First Online:
Heart Failure Management: The Neural Pathways

Abstract

The autonomic nervous system (ANS) plays a key role in the maintenance of cardiovascular homeostasis. The main transmitters involved are acetylcholine (preganglionic neurons and parasympathetic terminals) and catecholamines (noradrenaline in sympathetic nerve terminals and adrenaline released from the adrenal glands). Interestingly enough the transmitters involved, their receptors, and post-receptor signaling undergo age-associated changes throughout the brain and the body. During senescence a shift of the cardiac ANS toward an increase in sympathetic activation has been observed. A better understanding of the underlying mechanisms is clinically pertinent because of the possible interconnection of age-dependent sympathetic nervous changes with cardiovascular disease development. This chapter specifically deals with the effects of aging on the molecular mechanisms implicated at central, ganglia, and synaptic (both pre- and postsynaptic) levels in the regulation of heart functioning. Since neurotrophins are involved in differentiation, synaptogenesis, and survival of ANS neurons, the consequences of age-related changes, specifically in NGF and BDNF expression, are also examined at cardiac level. Moreover, considering the importance of baroreceptor reflexes in the maintenance of the circulatory homeostasis, their alterations during senescence are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esler MD, Turner AG, Kaye DM, et al. Aging effects on human sympathetic neuronal function. Am J Physiol. 1995;268:R278–85.

    CAS  PubMed  Google Scholar 

  2. Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35 Suppl 4:S1–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kenney MJ. Animal aging and regulation of sympathetic nerve discharge. J Appl Physiol (1985). 2010;109(4):951–8.

    Article  Google Scholar 

  4. Barman SM. Brainstem control of cardiovascular function. In: Klemm WR, Vertes RP, editors. Brainstem mechanisms of behavior. New York: Wiley; 1990. p. 353–81.

    Google Scholar 

  5. Sun MK. Central neural organization and control of sympathetic nervous system in mammals. Prog Neurobiol. 1995;47(3):157–233.

    Article  CAS  PubMed  Google Scholar 

  6. Dampney RA, Horiuchi J, Tagawa T, et al. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand. 2003;177(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  7. Itoh H, Buñag RD. Aging reduces cardiovascular and sympathetic responses to NTS injections of serotonin in rats. Exp Gerontol. 1992;27(3):309–20.

    Article  CAS  PubMed  Google Scholar 

  8. Huangfu DH, Koshiya N, Guyenet PG. A5 noradrenergic unit activity and sympathetic nerve discharge in rats. Am J Physiol Regul Integr Comp Physiol. 1991;261:R393–402.

    CAS  Google Scholar 

  9. Van Huysse JW, Bealer SL. Central nervous system norepinephrine release, hypotension and hyperosmolality in conscious rats. Am J Physiol Regul Integr Comp Physiol. 1991;260:R1071–6.

    Google Scholar 

  10. Esler M, Hastings J, Lambert G, et al. The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. Am J Physiol Regul Integr Comp Physiol. 2002;282(3):R909–16.

    Article  CAS  PubMed  Google Scholar 

  11. Dickstein DL, Kabaso D, Rocher AB, et al. Changes in the structural complexity of the aged brain. Aging Cell. 2007;6:275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alkadhi K, Alzoubi K. Role of long-term potentiation of sympathetic ganglia (gLTP) in hypertension. Clin Exp Hypertens. 2007;29(5):267–86.

    Article  PubMed  Google Scholar 

  13. Partanen M, Waller SB, London ED, et al. Indices of neurotransmitter synthesis and release in aging sympathetic nervous system. Neurobiol Aging. 1985;6:227–32.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt RE. Age-related sympathetic ganglionic neuropathology: human pathology and animal models. Auton Neurosci. 2002;96(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  15. Seals DR, Esler MD. Human ageing and the sympathoadrenal system. J Physiol. 2000;528(Pt 3):407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age. Nature. 1976;261:333–5.

    Article  CAS  PubMed  Google Scholar 

  17. Jones DH, Hamilton CA, Reid JL. Plasma noradrenaline, age, and blood pressure: a population study. Clin Sci Mol Med Suppl. 1978;4:73s–5.

    CAS  PubMed  Google Scholar 

  18. Goldstein DS, Lake CF, Chernow B, et al. Age-dependence of hypertensive-normotensive differences in plasma norepinephrine. Hypertension. 1983;5:100–4.

    Article  CAS  PubMed  Google Scholar 

  19. Padovani A, Govoni S, Battaini F, et al. Alcohol impairs age-dependent adaptation of human lymphocyte beta-adrenergic receptors. Eur J Clin Invest. 1987;17(6):511–4.

    Article  CAS  PubMed  Google Scholar 

  20. Rubin PC, Scott PJ, McLean K, et al. Noradrenaline release and clearance in relation to age and blood pressure in man. Eur J Clin Invest. 1982;12:121–5.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz RS, Jaeger LF, Veith RC. The importance of body composition to the increase in plasma norepinephrine appearance rate in elderly men. J Gerontol. 1987;42:546–51.

    Article  CAS  PubMed  Google Scholar 

  22. Marker JC, Cryer PE, Clutter WE. Simplified measurement of norepinephrine kinetics: application to studies of aging and exercise training. Am J Physiol. 1994;267:E380–7.

    CAS  PubMed  Google Scholar 

  23. Esler M, Skews H, Leonard P, et al. Age-dependence of noradrenaline kinetics in normal subjects. Clin Sci (Lond). 1981;60:217–9.

    Article  CAS  Google Scholar 

  24. Morrow LA, Linares OA, Hill TJ, et al. Age differences in the plasma clearance mechanisms for epinephrine and norepinephrine in humans. J Clin Endocrinol Metab. 1987;65:508–11.

    Article  CAS  PubMed  Google Scholar 

  25. Esler M, Kaye D, Thompson J, et al. Effects of aging on epinephrine secretion and regional release of epinephrine from the human heart. J Clin Endocrinol Metab. 1995;80:435–42.

    CAS  PubMed  Google Scholar 

  26. Daly RN, Goldberg PB, Roberts J. The effect of age on presynaptic alpha 2 adrenoceptor autoregulation of norepinephrine release. J Gerontol. 1989;44:B59–66.

    Article  CAS  PubMed  Google Scholar 

  27. Buchholz J, Duckles SP. Effect of age on prejunctional modulation of norepinephrine release. J Pharmacol Exp Ther. 1990;252:159–64.

    CAS  PubMed  Google Scholar 

  28. Docherty JR. Cardiovascular responses in ageing: a review. Pharmacol Rev. 1990;42(2):103–25.

    CAS  PubMed  Google Scholar 

  29. Aggarwal A, Esler MD, Socratous F, et al. Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. J Am Coll Cardiol. 2001;37:1246–51.

    Article  CAS  PubMed  Google Scholar 

  30. Molderings G, Likungu J, Zerkowski HR, et al. Presynaptic β2-adrenoceptors on the sympathetic nerve fibres of the human saphenous vein: no evidence for involvement in adrenaline-mediated positive feedback loop regulating noradrenergic transmission. Naunyn-Schmiedeberg’s Arch Pharmacol. 1988;337:408–14.

    Article  CAS  Google Scholar 

  31. Starke K, Gothert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989;69:864–989.

    CAS  PubMed  Google Scholar 

  32. Docherty JR. Age-related changes in adrenergic neuroeffector transmission. Auton Neurosci. 2002;96(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  33. Borton M, Docherty JR. The effects of ageing on neuronal uptake of noradrenaline in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1989;340:139–43.

    Article  CAS  PubMed  Google Scholar 

  34. Li ST, Holmes C, Kopin IJ, et al. Aging-related changes in cardiac sympathetic function in humans, assessed by 6-18F-fluorodopamine PET scanning. J Nucl Med. 2003;44:1599–603.

    CAS  PubMed  Google Scholar 

  35. Leenen FH, Coletta E, Fourney A, et al. Aging and cardiac responses to epinephrine in humans: role of neuronal uptake. Am J Physiol Heart Circ Physiol. 2005;288:H2498–503.

    Article  CAS  PubMed  Google Scholar 

  36. Klein C, Gerber JG, Gal J, et al. Beta-adrenergic receptors in the elderly are not less sensitive to timolol. Clin Pharmacol Ther. 1986;40(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  37. Conway J, Wheeler R, Sannerstedt R. Sympathetic nervous activity during exercise in relation to age. Cardiovasc Res. 1971;5(4):577–81.

    Article  CAS  PubMed  Google Scholar 

  38. White M, Leenen FH. Aging and cardiovascular responsiveness to beta-agonist in humans: role of changes in beta-receptor responses versus baroreflex activity. Clin Pharmacol Ther. 1994;56:543–53.

    Article  CAS  PubMed  Google Scholar 

  39. Brodde OE, Leineweber K. Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur J Pharmacol. 2004;500(1–3):167–76.

    Article  CAS  PubMed  Google Scholar 

  40. Brodde OE, Zerkowski HR, Schranz D, et al. Age dependent changes in the beta-adrenoceptor–G-protein(s)–adenylyl cyclase system in human right atrium. J Cardiovasc Pharmacol. 1995;26:20–6.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao RP, Tomhave ED, Wang DJ, et al. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998;101(6):1273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaye DM, Esler MD. Autonomic control of the aging heart. Neuromolecular Med. 2008;10(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  43. Jose AD, Stitt F, Collison D. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. Am Heart J. 1970;79(4):488–98.

    Article  CAS  PubMed  Google Scholar 

  44. Davies MJ. Pathology of the conducting system. In: Caird FL, Dall JLC, Kennedy RD, editors. Cardiology in old age. New York: Plenum; 1976. p. 57–9.

    Chapter  Google Scholar 

  45. Masi CM, Hawkley LC, Rickett EM, et al. Respiratory sinus arrhythmia and diseases of aging: obesity, diabetes mellitus, and hypertension. Biol Psychol. 2007;74(2):212–23.

    Article  PubMed  Google Scholar 

  46. Brodde OE, Konschak U, Becker K, et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest. 1998;101(2):471–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poller U, Nedelka G, Radke J, et al. Age-dependent changes in cardiac muscarinic receptor function in healthy volunteers. J Am Coll Cardiol. 1997;29(1):187–93.

    Article  CAS  PubMed  Google Scholar 

  48. Giessler C, Wangemann T, Zerkowski HR, et al. Age-dependent decrease in the negative inotropic effect of carbachol on isolated human right atrium. Eur J Pharmacol. 1998;357:199–202.

    Article  CAS  PubMed  Google Scholar 

  49. Liu HR, Zhao RR, Zhi JM, et al. Screening of serum autoantibodies to cardiac beta1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 subjects of varying ages. Autoimmunity. 1999;29:43–51.

    Article  PubMed  Google Scholar 

  50. Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R3–12.

    Article  CAS  PubMed  Google Scholar 

  51. Laitinen T, Hartikainen J, Vanninen E, et al. Age and gender dependency of baroreflex sensitivity in healthy subjects. J Appl Physiol. 1998;84:576–83.

    CAS  PubMed  Google Scholar 

  52. Monahan KD, Dinenno FA, Seals DR, et al. Age-associated changes in cardiovagal baroreflex sensitivity are related to central arterial compliance. Am J Physiol Heart Circ Physiol. 2001;281:H284–9.

    CAS  PubMed  Google Scholar 

  53. Studinger P, Goldstein R, Taylor JA. Age- and fitness-related alterations in vascular sympathetic control. J Physiol. 2009;587(Pt 9):2049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Monahan KD. A new answer to an old question: does ageing modify baroreflex control of vascular sympathetic outflow in humans? J Physiol. 2009;587(Pt 9):1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lanni C, Stanga S, Racchi M, et al. The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders. Curr Pharm Des. 2010;16(6):698–717.

    Article  CAS  PubMed  Google Scholar 

  56. Govoni S, Pascale A, Amadio M, et al. NGF and heart: is there a role in heart disease? Pharmacol Res. 2011;63(4):266–1277.

    Article  CAS  PubMed  Google Scholar 

  57. Mattson MP, Wan R. Neurotrophic factors in autonomic nervous system plasticity and dysfunction. Neuromolecular Med. 2008;10(3):157–68.

    Article  CAS  PubMed  Google Scholar 

  58. Hasan W, Smith PG. Nerve growth factor expression in parasympathetic neurons: regulation by sympathetic innervation. Eur J Neurosci. 2000;12:4391–7.

    Article  CAS  PubMed  Google Scholar 

  59. Causing CG, Gloster A, Aloyz R, et al. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron. 1997;18:257–67.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou X, Nai Q, Chen M, et al. Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: relevance to regulating alpha7-containing nicotinic receptors and synaptic function. J Neurosci. 2004;24:4340–50.

    Article  CAS  PubMed  Google Scholar 

  61. Loewenthal N, Levy J, Schreiber R, et al. Nerve growth factor-tyrosine kinase A pathway is involved in thermoregulation and adaptation to stress: studies on patients with hereditary sensory and autonomic neuropathy type IV. Pediatr Res. 2005;57:587–90.

    Article  CAS  PubMed  Google Scholar 

  62. Wan R, Weigand LA, Bateman R, et al. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J Neurochem. 2014;129(4):573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang H, Zhou XF. Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats. Neuroscience. 2002;112:967–75.

    Article  CAS  PubMed  Google Scholar 

  64. Yang B, Slonimsky JD, Birren SJ. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci. 2002;5:539–45.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou S, Chen LS, Miyauchi Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83.

    Article  CAS  PubMed  Google Scholar 

  66. Cao JM, Chen LS, KenKnight BH, et al. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    Article  CAS  PubMed  Google Scholar 

  67. Hassankhani A, Steinhelper ME, Soonpaa MH, et al. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol. 1995;169:309–21.

    Article  CAS  PubMed  Google Scholar 

  68. Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16.

    Article  CAS  PubMed  Google Scholar 

  69. Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol. 1991;22:138–46.

    Article  CAS  PubMed  Google Scholar 

  70. Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    Article  CAS  PubMed  Google Scholar 

  71. Saygili E, Kluttig R, Rana OR, et al. Age-related regional differences in cardiac nerve growth factor expression. Age (Dordr). 2012;34(3):659–67.

    Article  CAS  Google Scholar 

  72. Cai D, Holm JM, Duignan IJ, et al. BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics. 2006;24(3):191–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Pascale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pascale, A., Govoni, S. (2016). Cerebral Aging: Implications for the Heart Autonomic Nervous System Regulation. In: Gronda, E., Vanoli, E., Costea, A. (eds) Heart Failure Management: The Neural Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-24993-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24993-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24991-9

  • Online ISBN: 978-3-319-24993-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics