Skip to main content

Emerging Biomarkers in Personalized Therapy of Lung Cancer

  • Chapter
  • First Online:
Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management

Abstract

The two clinically validated and Food and Drug Administration approved lung cancer predictive biomarkers (epidermal growth factor receptor mutations and anaplastic lymphoma kinase (ALK) translocations) occur in only about 20 % of lung adenocarcinomas and acquired resistance develops to first generation drugs. Several other oncogenic drivers for lung adenocarcinoma have emerged as potentially druggable targets with new predictive biomarkers. Oncologists are requesting testing for ROS1 translocations which predict susceptibility to crizotinib, already approved for ALK positive lung cancers. Other potential biomarkers which are currently undergoing clinical trials are RET, MET, HER2 and BRAF. Detection of these biomarkers includes fluorescent in situ hybridization and/or reverse transcriptase polymerase chain reaction (ROS1, RET, HER2), mutation analysis (BRAF) and immunohistochemistry (MET). Screening by immunohistochemistry may be useful for some biomarkers (ROS1, BRAF). Targeted next generation sequencing techniques may be useful as well. These five biomarkers are under consideration for inclusion in revised lung cancer biomarker guidelines by the College of American Pathologists, International Association for the Study of Lung Cancer and Association for Molecular Pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cagle PT, Allen TC (2012) Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 136(12):1482–1491

    Article  PubMed  CAS  Google Scholar 

  2. Lindeman NI, Cagle PT, Beasley MB et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of american pathologists, international association for the study of lung cancer, and association for molecular pathology. Arch Pathol Lab Med 137(6):828–860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cagle PT, Sholl LM, Lindeman NI et al (2014) Template for reporting results of biomarker testing of specimens from patients with non-small cell carcinoma of the lung. Arch Pathol Lab Med 138(2):171–174

    Article  PubMed  Google Scholar 

  4. Mitsudomi T, Yatabe Y (2007) Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98(12):1817–1824

    Article  PubMed  CAS  Google Scholar 

  5. Suda K, Tomizawa K, Mitsudomi T (2010) Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 29(1):49–60

    Article  PubMed  CAS  Google Scholar 

  6. Reinersman JM, Johnson ML, Riely GJ et al (2011) Frequency of EGFR and KRAS mutations in lung adenocarcinomas in African Americans. J Thorac Oncol 6(1):28–31

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang W, McQuitty EB, Olsen R et al (2014) EGFR mutations in US Hispanic versus non-Hispanic white patients with lung adenocarcinoma. Arch Pathol Lab Med 138(4):543–545

    Article  PubMed  Google Scholar 

  8. Shaw AT, Yeap BY, Mino-Kenudson M et al (2009) Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Shaw AT, Yeap BY, Solomon BJ et al (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12(11):1004–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rodig SJ, Mino-Kenudson M, Dacic S et al (2009) Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 15(16):5216–5223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Atherly AJ, Camidge DR (2012) The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer 106(6):1100–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gaughan EM, Costa DB (2011) Genotype-driven therapies for non-small cell lung cancer: focus on EGFR, KRAS and ALK gene abnormalities. Ther Adv Med Oncol 3(3):113–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Engelman JA, Janne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14(10):2895–2899

    Article  PubMed  Google Scholar 

  14. Jackman D, Pao W, Riely GJ et al (2010) Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 28(2):357–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yano S (2010) Studies for mechanism of drug resistance to EGFR-TKI. Gan To Kagaku Ryoho 37(8):1463–1466

    PubMed  Google Scholar 

  16. Choi YL, Soda M, Yamashita Y et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739

    Article  PubMed  CAS  Google Scholar 

  17. Doebele RC, Pilling AB, Aisner DL et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Katayama R, Khan TM, Benes C et al (2011) Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A 108(18):7535–7540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Katayama R, Shaw AT, Khan TM et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4(120):120ra17

    Google Scholar 

  20. Bergethon K, Shaw AT, Ou SH et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Janne PA, Meyerson M (2012) ROS1 rearrangements in lung cancer: a new genomic subset of lung adenocarcinoma. J Clin Oncol 30(8):878–879

    Article  PubMed  CAS  Google Scholar 

  22. Ou SH, Tan J, Yen Y, Soo RA (2012) ROS1 as a ‘druggable’ receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev Anticancer Ther 12(4):447–456

    Article  PubMed  CAS  Google Scholar 

  23. Rimkunas VM, Crosby K, Kelly M et al (2012) Analysis of receptor tyrosine kinase ROS1 positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res 18(16):4449–4457

    Article  PubMed  CAS  Google Scholar 

  24. Yasuda H, de Figueiredo-Pontes LL, Kobayashi S, Costa DB (2012) Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1-translocated lung cancer. J Thorac Oncol 7(7):1086–1090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chin LP, Soo RA, Soong R, Ou SH (2012) Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J Thorac Oncol 7(11):1625–1630

    Article  PubMed  CAS  Google Scholar 

  26. Shaw AT, Camidge DR, Engelman JA (2012) Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol 30(15 suppl):7508

    Google Scholar 

  27. Takeuchi K, Soda M, Togashi Y et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378–381

    Article  PubMed  CAS  Google Scholar 

  28. Forde PM, Rudin CM (2012) Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother 13(8):1195–1201

    Article  PubMed  CAS  Google Scholar 

  29. Davies KD, Doebele RC (2013) Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 19(15):4040–4045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shaw AT, Hsu PP, Awad MM, Engelman JA (2013) Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 13(11):772–787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Heigener DF, Reck M (2014) Crizotinib. Recent Results Cancer Res 201:197–205

    Article  PubMed  CAS  Google Scholar 

  32. Go H, Kim DW, Kim D et al (2013) Clinicopathologic analysis of ROS1-rearranged non-small-cell lung cancer and proposal of a diagnostic algorithm. J Thorac Oncol 8(11):1445–1450

    Article  PubMed  CAS  Google Scholar 

  33. Kim HR, Lim SM, Kim HJ et al (2013) The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann Oncol 24(9):2364–2370

    Article  PubMed  CAS  Google Scholar 

  34. Pan Y, Zhang Y, Li Y et al (2014) ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 84(2):121–126

    Article  PubMed  Google Scholar 

  35. Warth A, Muley T, Dienemann H et al (2014) ROS1 expression and translocations in non-small cell lung cancer: clinicopathological analysis of 1478 cases. Histopathology 65:187–194. doi:10.1111/his.12379

    Article  PubMed  Google Scholar 

  36. Yoshida A, Kohno T, Tsuta K et al (2013) ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol 37(4):554–562

    Article  PubMed  Google Scholar 

  37. Sholl LM, Sun H, Butaney M et al (2013) ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol 37(9):1441–1449

    Article  PubMed  Google Scholar 

  38. Yoshida A, Tsuta K, Wakai S et al (2014) Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 27(5):711–720

    Article  PubMed  CAS  Google Scholar 

  39. Matsuura S, Shinmura K, Kamo T et al (2013) CD74-ROS1 fusion transcripts in resected non-small cell lung carcinoma. Oncol Rep 30(4):1675–1680

    PubMed  CAS  Google Scholar 

  40. Davies KD, Le AT, Theodoro MF et al (2012) Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res 18(17):4570–4579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Arai Y, Totoki Y, Takahashi H et al (2013) Mouse model for ROS1-rearranged lung cancer. PLoS One 8(2), e56010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mescam-Mancini L, Lantuejoul S, Moro-Sibilot D et al (2014) On the relevance of a testing algorithm for the detection of ROS1-rearranged lung adenocarcinomas. Lung Cancer 83(2):168–173

    Article  PubMed  Google Scholar 

  43. Davies KD, Mahale S, Astling DP et al (2013) Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One 8(12), e82236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Awad MM, Katayama R, McTigue M et al (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 368(25):2395–2401

    Article  PubMed  CAS  Google Scholar 

  45. Davare MA, Saborowski A, Eide CA et al (2013) Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad Sci U S A 110(48):19519–19524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gainor JF, Shaw AT (2013) Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 18(7):865–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ju YS, Lee WC, Shin JY et al (2012) A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 22(3):436–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kohno T, Ichikawa H, Totoki Y et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375–377

    Article  PubMed  CAS  Google Scholar 

  49. Li F, Feng Y, Fang R et al (2012) Identification of RET gene fusion by exon array analyses in “pan-negative” lung cancer from never smokers. Cell Res 22(5):928–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lipson D, Capelletti M, Yelensky R et al (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18(3):382–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Suehara Y, Arcila M, Wang L et al (2012) Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res 18(24):6599–6608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tsuta K, Kohno T, Yoshida A et al (2014) RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br J Cancer 110(6):1571–1578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yokota K, Sasaki H, Okuda K et al (2012) KIF5B/RET fusion gene in surgically-treated adenocarcinoma of the lung. Oncol Rep 28(4):1187–1192

    PubMed  CAS  Google Scholar 

  54. Drilon A, Wang L, Hasanovic A et al (2013) Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3(6):630–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang R, Hu H, Pan Y et al (2012) RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 30(35):4352–4359

    Article  PubMed  CAS  Google Scholar 

  56. Chao BH, Briesewitz R, Villalona-Calero MA (2012) RET fusion genes in non-small-cell lung cancer. J Clin Oncol 30(35):4439–4441

    Article  PubMed  CAS  Google Scholar 

  57. Matsubara D, Kanai Y, Ishikawa S et al (2012) Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol 7(12):1872–1876

    Article  PubMed  CAS  Google Scholar 

  58. Gautschi O, Zander T, Keller FA et al (2013) A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol 8(5):e43–e44

    Article  PubMed  Google Scholar 

  59. Sasaki H, Shimizu S, Tani Y et al (2012) RET expression and detection of KIF5B/RET gene rearrangements in Japanese lung cancer. Cancer Med 1(1):68–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cappuzzo F, Janne PA, Skokan M et al (2009) (2009) MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol 20(2):298–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cappuzzo F, Marchetti A, Skokan M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27(10):1667–1674

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen HJ, Mok TS, Chen ZH et al (2009) Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. Pathol Oncol Res 15(4):651–658

    Article  PubMed  CAS  Google Scholar 

  64. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043

    Article  PubMed  CAS  Google Scholar 

  65. Kong-Beltran M, Seshagiri S, Zha J et al (2006) Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res 66(1):283–289

    Article  PubMed  CAS  Google Scholar 

  66. Kubo T, Yamamoto H, Lockwood WW et al (2009) MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer 124(8):1778–1784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T (2009) Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 4(1):5–11

    Article  PubMed  Google Scholar 

  68. Sierra JR, Tsao MS (2011) c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 3(1 suppl):S21–S35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Surati M, Patel P, Peterson A, Salgia R (2011) Role of MetMAb (OA-5D5) in c-MET active lung malignancies. Expert Opin Biol Ther 11(12):1655–1662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Spigel DR, Ervin TJ, Ramlau RA et al (2013) Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31(32):4105–4114

    Article  PubMed  CAS  Google Scholar 

  71. Koeppen H, Yu W, Zha J et al (2014) Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib {+/-} onartuzumab in advanced non-small-cell lung cancer: MET expression levels are predictive of patient benefit. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-1836

    PubMed Central  Google Scholar 

  72. Spigel DR, Edelman MJ, Mok T et al (2012) Treatment rationale study design for the MetLung trial: a randomized, double-blind phase III study of onartuzumab (MetMAb) in combination with erlotinib versus erlotinib alone in patients who have received standard chemotherapy for stage IIIB or IV met-positive non-small-cell lung cancer. Clin Lung Cancer 13(6):500–504

    Article  PubMed  CAS  Google Scholar 

  73. Scagliotti GV, Novello S, Schiller JH et al (2012) Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer 13(5):391–395

    Article  PubMed  CAS  Google Scholar 

  74. Sequist LV, von Pawel J, Garmey EG et al (2011) Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 29(24):3307–3315

    Article  PubMed  CAS  Google Scholar 

  75. Robinson KW, Sandler AB (2013) The role of MET receptor tyrosine kinase in non-small cell lung cancer and clinical development of targeted anti-MET agents. Oncologist 18(2):115–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Buttitta F, Barassi F, Fresu G et al (2006) Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int J Cancer 119(11):2586–2591

    Article  PubMed  CAS  Google Scholar 

  77. Shigematsu H, Takahashi T, Nomura M et al (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65(5):1642–1646

    Article  PubMed  CAS  Google Scholar 

  78. Stephens P, Hunter C, Bignell G et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431(7008):525–526

    Article  PubMed  CAS  Google Scholar 

  79. Arcila ME, Chaft JE, Nafa K et al (2012) Prevalence, clinicopathologic associations and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res 18(18):4910–4918

    Article  PubMed  CAS  Google Scholar 

  80. Davies H, Hunter C, Smith R et al (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65(17):7591–7595

    PubMed  CAS  Google Scholar 

  81. Sasaki H, Shimizu S, Endo K et al (2006) EGFR and erbB2 mutation status in Japanese lung cancer patients. Int J Cancer 118(1):180–184

    Article  PubMed  CAS  Google Scholar 

  82. Sonobe M, Manabe T, Wada H, Tanaka F (2006) Lung adenocarcinoma harboring mutations in the ERBB2 kinase domain. J Mol Diagn 8(3):351–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Mazieres J, Peters S, Lepage B et al (2013) Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31(16):1997–2003

    Article  PubMed  CAS  Google Scholar 

  84. De Greve J, Teugels E, Geers C et al (2012) Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 76(1):123–127

    Article  PubMed  Google Scholar 

  85. Kris M, Goldberg Z, Janne PA, Kim D, Martins R, Mok TSK (2012) Dacomitinib (PF-00299804), an irreversible pan-HER tyrosine kinase inhibitor (TKI), for first-line treatment of EGFR-mutant or HER2-mutant or -amplified lung cancers. Ann Oncol 23:1228

    Google Scholar 

  86. Reckamp KL, Giaccone G, Camidge DR et al (2014) A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer 120(8):1145–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gandhi L, Bahleda R, Cleary JM, Hollebecque A, Kwak EL, Pandya S (2011) Two dimensional phase I study of neratinib (NER) combined with temsirolimus (TEM) in patients (pts) with solid tumors. J Clin Oncol 29:3027

    Article  CAS  Google Scholar 

  88. Gandhi L, Bahleda R, Tolaney SM et al (2014) Phase I study of neratinib in combination with temsirolimus in patients with human epidermal growth factor receptor 2-dependent and other solid tumors. J Clin Oncol 32(2):68–75

    Article  PubMed  CAS  Google Scholar 

  89. Clamon G, Herndon J, Kern J et al (2005) Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: a phase II trial of cancer and leukemia group B. Cancer 103(8):1670–1675

    Article  PubMed  CAS  Google Scholar 

  90. Heinmoller P, Gross C, Beyser K et al (2003) HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res 9(14):5238–5243

    PubMed  Google Scholar 

  91. Grob TJ, Kannengiesser I, Tsourlakis MC et al (2012) Heterogeneity of ERBB2 amplification in adenocarcinoma, squamous cell carcinoma and large cell undifferentiated carcinoma of the lung. Mod Pathol 25(12):1566–1573

    Article  PubMed  CAS  Google Scholar 

  92. Takezawa K, Pirazzoli V, Arcila ME et al (2012) HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov 2(10):922–933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Garbe C, Abusaif S, Eigentler TK (2014) Vemurafenib. Recent Results Cancer Res 201:215–225

    Article  PubMed  CAS  Google Scholar 

  95. Anderson S, Bloom KJ, Vallera DU et al (2012) Multisite analytic performance studies of a real-time polymerase chain reaction assay for the detection of BRAF V600E mutations in formalin-fixed, paraffin-embedded tissue specimens of malignant melanoma. Arch Pathol Lab Med 136(11):1385–1391

    Article  PubMed  CAS  Google Scholar 

  96. Capper D, Berghoff AS, Magerle M et al (2012) Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 123(2):223–233

    Article  PubMed  CAS  Google Scholar 

  97. Capper D, Preusser M, Habel A et al (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122(1):11–19

    Article  PubMed  CAS  Google Scholar 

  98. Marin C, Beauchet A, Capper D et al (2014) Detection of BRAF p.V600E mutations in melanoma by immunohistochemistry has a good interobserver reproducibility. Arch Pathol Lab Med 138(1):71–75

    Article  PubMed  Google Scholar 

  99. Ballantyne AD, Garnock-Jones KP (2013) Dabrafenib: first global approval. Drugs 73(12):1367–1376

    Article  PubMed  CAS  Google Scholar 

  100. Wright CJ, McCormack PL (2013) Trametinib: first global approval. Drugs 73(11):1245–1254

    Article  PubMed  Google Scholar 

  101. Brustugun OT, Khattak AM, Tromborg AK et al (2014) BRAF-mutations in non-small cell lung cancer. Lung Cancer 84(1):36–38

    Article  PubMed  Google Scholar 

  102. Kinno T, Tsuta K, Shiraishi K et al (2014) Clinicopathological features of nonsmall cell lung carcinomas with BRAF mutations. Ann Oncol 25(1):138–142

    Article  PubMed  CAS  Google Scholar 

  103. Marchetti A, Felicioni L, Malatesta S et al (2011) Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29(26):3574–3579

    Article  PubMed  CAS  Google Scholar 

  104. Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29(15):2046–2051

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yousem SA, Nikiforova M, Nikiforov Y (2008) The histopathology of BRAF-V600E-mutated lung adenocarcinoma. Am J Surg Pathol 32(9):1317–1321

    Article  PubMed  Google Scholar 

  106. Gautschi O, Pauli C, Strobel K et al (2012) A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J Thorac Oncol 7(10):e23–e24

    Article  PubMed  Google Scholar 

  107. Peters S, Michielin O, Zimmermann S (2013) Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol 31(20):e341–e344

    Article  PubMed  Google Scholar 

  108. Robinson SD, O’Shaughnessy JA, Lance Cowey C, Konduri K (2014) BRAF V600E-mutated lung adenocarcinoma with metastases to the brain responding to treatment with vemurafenib. Lung Cancer 85:326–330. doi:10.1016/j.lungcan.2014.05.009

    Article  PubMed  Google Scholar 

  109. Gautschi O, Peters S, Zoete V et al (2013) Lung adenocarcinoma with BRAF G469L mutation refractory to vemurafenib. Lung Cancer 82(2):365–367

    Article  PubMed  Google Scholar 

  110. Falchook GS, Long GV, Kurzrock R et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379(9829):1893–1901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Rudin CM, Hong K, Streit M (2013) Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol 8(5):e41–e42

    PubMed  PubMed Central  Google Scholar 

  112. McCourt CM, McArt DG, Mills K et al (2013) Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. PLoS One 8(7), e69604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tuononen K, Maki-Nevala S, Sarhadi VK et al (2013) Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer 52(5):503–511

    Article  PubMed  CAS  Google Scholar 

  114. Ilie M, Long E, Hofman V et al (2013) Diagnostic value of immunohistochemistry for the detection of the BRAFV600E mutation in primary lung adenocarcinoma Caucasian patients. Ann Oncol 24(3):742–748

    Article  PubMed  CAS  Google Scholar 

  115. Sasaki H, Shimizu S, Tani Y et al (2013) Usefulness of immunohistochemistry for the detection of the BRAF V600E mutation in Japanese lung adenocarcinoma. Lung Cancer 82(1):51–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip T. Cagle M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cagle, P.T., Raparia, K., Portier, B.P. (2016). Emerging Biomarkers in Personalized Therapy of Lung Cancer. In: Ahmad, A., Gadgeel, S. (eds) Lung Cancer and Personalized Medicine: Novel Therapies and Clinical Management. Advances in Experimental Medicine and Biology, vol 890. Springer, Cham. https://doi.org/10.1007/978-3-319-24932-2_2

Download citation

Publish with us

Policies and ethics