Skip to main content

Climate Change and Mosquito-Borne Diseases

  • Chapter
  • First Online:
Climate Change and Health

Part of the book series: Climate Change Management ((CCM))

Abstract

Ecology, development, behaviour, and survival of mosquitoes as well as the transmission dynamic of pathogens, strongly depend on climatic factors. Models have been developed to predict forthcoming mosquito-borne diseases scenarios based on estimations of future climate patterns. However, the complex interplay of climate variables with the mosquito-host-pathogen systems rend the overall effect of the climate on the local prevalence of mosquito-borne diseases difficult to determine. Therefore, the assumption that warmer global temperatures will produce increase mosquito proliferation and geographic range may not be entirely true. Furthermore, general climatic observations may not reflect the local microclimates experienced by mosquitoes, mainly by the synantrophic species which live in mild human-modified habitats. Human socio-economic context, community’s culture or behavioural habits are also sidestepped factors prone to influence MBD transmission.

This chapter pretends to illustrate the complex scenario where mosquito-borne diseases develop and the myriad of consequences that climate may induce in the incidence of these illness. Different types of models used to predict forthcoming mosquito-borne diseases scenarios are presented as well as the limitations that might preclude their use as tools for the design of surveillance or control strategies.

As an example, it is also presented the history of dengue prevention and re-emergence. The evolution of this well documented disease reveals that besides climate, the increase of human population density, the growth urbanized areas, the upsurge of international mobility, the discontinuity of sustainable source-reduction activities and the emergence of insecticide resistance in mosquitoes are also determinants for dengue prevalence increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adalja A, Sell T, Bouri N, Franco C (2012) Lessons learned during dengue outbreaks in the United States, 2001–2011. Emerg Infect Dis 18:608–614

    Article  Google Scholar 

  • Alten B, Kampen H, Fontenille D (2007) Malaria in southern Europe: resurgence from the past? In: Takken W, Knols BGJ (eds) Emerging pests and vector-borne diseases in Europe, vol 1, Ecology and control of vector-borne diseases. Wageningen Academic, Wageningen, pp 35–57

    Google Scholar 

  • Araújo M, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Beebe NW, Cooper RD, Mottram P, Sweeney AW (2009) Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3(5):1–9. doi:10.1371/journal.pntd.0000429

    Article  Google Scholar 

  • Brathwaite Dick O, San Martín JL, Montoya RH, del Diego J, Zambrano B, Dayan GH (2012) The history of dengue outbreaks in the Americas. Am J Trop Med Hyg 87(4):584–593. doi:10.4269/ajtmh.2012.11-0770

    Article  Google Scholar 

  • Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054

    Article  Google Scholar 

  • Capinha C, Rocha J, Sousa CA (2014) Macroclimate determines the global range limit of Aedes aegypti. Ecohealth 11:420–428

    Article  Google Scholar 

  • Chirstophers SR (1960) Aedes aegypti (L.) The yellow fever mosquito. Its life history. Bionomics and structure. Cambridge University Press, London, p 739

    Google Scholar 

  • Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R, Sergon K, Linthicum KJ (2007) Drought-associated chikungunya emergence along coastal East Africa. Am J Trop Med Hyg 76(3):405–407, 76/3/405 [pii]

    Google Scholar 

  • Cook G, Zumla A (eds) (2009) Manson’s tropical diseases, 22nd edn. Saunders Elsevier, London, p 1557

    Google Scholar 

  • Detinova TS (1962) Age-grouping methods in Diptera of medical importance, Monograph series, no. 47. World Health Organization, Geneve, p 194

    Google Scholar 

  • Egizia A, Fefferman NH, Fonseca DM, Fefferman NH (2015) Evidence that implicit assumptions of “no evolution” of disease vectors in changing environments can be violated on a rapid timescale. Philos Trans R Soc Lond B Biol Sci 370:pii: 20140136. doi:10.1098/rstb.2014.0136

    Google Scholar 

  • Garrett-Jones C (1964) Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature 204:1173–1175

    Article  Google Scholar 

  • Garrett-Jones C, Shidrawi GR (1969) Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology. Bull World Health Organ 40:531–545

    Google Scholar 

  • Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobučar A, Pem-Novosel I, Kurečić-Filipović S, Komparak S, Martić R, Duričić S, Betica-Radić L, Okmadžić J, Vilibić-Čavlek T, Babić-Erceg A, Turković B, Avsić-Županc T, Radić I, Ljubić M, Sarac K, Benić N, Mlinarić-Galinović G (2011) Autochthonous dengue fever in Croatia, August–September 2010. Euro Surveill 16(9):pii: 19805

    Google Scholar 

  • Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16(12):1702–1704. doi:10.1111/j.1469-0691.2010.03386.x

    Article  Google Scholar 

  • Green RM, Hay SI (2002) The potential of Pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications. Remote Sens Environ 79:166–175

    Article  Google Scholar 

  • Gubler DJ (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27(5):319–330. doi:10.1016/j.cimid.2004.03.013

    Article  Google Scholar 

  • Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna REJ (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72:209–220

    Google Scholar 

  • Hay SI, Packer MJ, Rogers DJ (1997) The impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. Int J Remote Sens 18:2899–2930

    Article  Google Scholar 

  • Hay S, Snow R, Rogers D (1998) Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans R Soc Trop Med Hyg 92:12–20

    Article  Google Scholar 

  • Hopp M, Foley J (2001) Global-scale relationships between climate and the dengue fever vector, Aedes Aegypti. Clim Chang 48:441–463

    Article  Google Scholar 

  • Jansen CC, Beebe NW (2010) The dengue vector Aedes aegypti: what comes next. Microbes Infect 12(4):272–279. doi:10.1016/j.micinf.2009.12.011

    Article  Google Scholar 

  • Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213

    Article  Google Scholar 

  • Lane RP, Crosskey, Roger W (1993) Service M.W. Mosquitoes (Culicidae) Chapter 5. In: Department of Entomology, The Natural History Museum LU (eds) Medical insects and arachnids. First edn. Chapman & Hall, London, p 723

    Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Lounibos L (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    Article  Google Scholar 

  • Lourenço PM, Sousa CA, Seixas J, Lopes P, Novo MT, Almeida APG (2011) Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal. J Vector Ecol 36:279–291

    Article  Google Scholar 

  • Machault V, Vignolles C, Borchi F, Vounatsou P, Pages F, Briolant S, Lacaux JP, Rogier C (2011) The use of remotely sensed environmental data in the study of malaria. Geospat Health 5(2):151–168

    Article  Google Scholar 

  • Murray NEA, Wilder-Smith MBQ (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5:299–309

    Google Scholar 

  • Mushinzimana E, Munga S, Minakawa N, Li L, Feng CC, Bian L, Kitron U, Schmidt C, Beck L, Zhou GF, Githeko AK, Yan GY (2006) Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands. Malar J 5:13

    Article  Google Scholar 

  • Nazareth T, Teodósio R, Porto G, Gonçalves L, Seixas G, Silva AC, Sousa CA (2014) Strengthening the perception-assessment tools for dengue prevention: a cross-sectional survey in a temperate region (Madeira, Portugal). BMC Public Health 14(1):39. doi:10.1186/1471-2458-14-39

    Article  Google Scholar 

  • Omeara GF, Evans LF, Gettman AD, Cuda JP (1995) Spread of Aedes albopictus and decline of Aedes aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32:554–562

    Article  Google Scholar 

  • Parreira R, Sousa CA (2015) Dengue fever in Europe: could there be an epidemic in the future? Expert Rev Anti-Infect Ther 13:29–40

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkermade R, Scharlemann JPW, Fernandez-Manjarrés JFF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt G, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  Google Scholar 

  • Pontes RJS, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A (2000) Vector densities that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg 62(3):378–383

    Google Scholar 

  • Pope KO, Rejmankova E, Savage HM, Arredondo Jimenez JI, Rodriguez MH, Roberts DR (1994) Remote-sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl 4(1):81–90

    Article  Google Scholar 

  • Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109(Suppl September 2000):141–161

    Article  Google Scholar 

  • Reiter P (2008) Global warming and malaria: knowing the horse before hitching the cart. Malar J 7(Suppl 1):S3. doi:10.1186/1475-2875-7-S1-S3

    Article  Google Scholar 

  • Rezza G (2014) Dengue and chikungunya: long-distance spread and outbreaks in naïve areas. Pathog Glob Health 108:349–355. doi:10.1179/2047773214Y.0000000163

    Article  Google Scholar 

  • Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli C, Panning M, Cassone A (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  Google Scholar 

  • Rodrigues HS, Monteiro MTT, Torres DFM (2013) Dengue in Cape Verde: modelling, vector control and vaccination. Math Popul Stud 20:208–223

    Article  Google Scholar 

  • Rodrigues HS, Monteiro MTT, Torres DFM, Silva AC, Sousa CA, Conceição C et al (2015) Dengue in Madeira Island. In: Bourguignon J-P (ed) Dynamics, games and science, International conference and advanced school planet earth DGS II. Springer, Switzerland

    Google Scholar 

  • Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse-flies in West-Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90:225–241

    Google Scholar 

  • Rogers DJ, Randolph SE, Snow RW, Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415:710–715

    Article  Google Scholar 

  • Sainz-Elipe S, Latorre JM, Escosa R, Maisà M, Fuentes MV, Mas-Coma S, Bargues MD (2010) Malaria resurgence risk in southern Europe: climate assessment in an historically endemic area of rice fields at the Mediterranean shore of Spain. Malar J 9:221

    Article  Google Scholar 

  • Slocombe JOD, Surgeoner GA, Srivastava B (1989) Determination of the heartworm transmission period and its use in diagnosis and control. In: Otto GF, Jackson RF, Knight DH, Campbell WC, Courtney CH, Dillon R, Hite SC, Jackson RI, Levine BG, Lewis RE, Noyes JD (eds) Proceedings of the heartworm symposium ‘89. American Heartworm Society, pp 19–26

    Google Scholar 

  • Sousa CA, Clairouin M, Seixas G, Viveiros B, Novo MT, Silva AC, Economopoulou A (2012) Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report. Euro Surveill 17(49):pii: 20333

    Google Scholar 

  • Sternberg ED, Thomas MB (2014) Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 30:115–122

    Article  Google Scholar 

  • Tabachnick WJ (2010) Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213:946–954. doi:10.1242/jeb.037564

    Article  Google Scholar 

  • Vasconcelos PF, Rosa A, Pinheiro FP, Rodrigues S, Rosa E, Cruz A, Rosa J (1999) Aedes aegypti, dengue and re-urbanization of yellow fever in Brazil and other South American countries–Past and present situation and future perspectives. Dengue Bull 23:55–66

    Google Scholar 

  • Warrilow D, Northill JA, Pyke AT (2012) Sources of dengue viruses imported into Queensland, Australia, 2002–2010. Emerg Infect Dis 18(11):1850–1857. doi:10.3201/eid1811.120014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Nazareth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nazareth, T., Seixas, G., Sousa, C.A. (2016). Climate Change and Mosquito-Borne Diseases. In: Leal Filho, W., Azeiteiro, U., Alves, F. (eds) Climate Change and Health. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-24660-4_12

Download citation

Publish with us

Policies and ethics