Skip to main content

Visual Analytics of Image-Centric Cohort Studies in Epidemiology

  • Conference paper
  • First Online:
Visualization in Medicine and Life Sciences III

Abstract

Epidemiology characterizes the influence of causes to disease and health conditions of defined populations. Cohort studies are population-based studies involving usually large numbers of randomly selected individuals and comprising numerous attributes, ranging from self-reported interview data to results from various medical examinations, e.g., blood and urine samples. Since recently, medical imaging has been used as an additional instrument to assess risk factors and potential prognostic information. In this chapter, we discuss such studies and how the evaluation may benefit from visual analytics. Cluster analysis to define groups, reliable image analysis of organs in medical imaging data and shape space exploration to characterize anatomical shapes are among the visual analytics tools that may enable epidemiologists to fully exploit the potential of their huge and complex data. To gain acceptance, visual analytics tools need to complement more classical epidemiologic tools, primarily hypothesis-driven statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.erasmus-epidemiology.nl/research/ergo.htm, accessed: 1/31/2016.

  2. 2.

    http://org.UiB.no/aldringsprosjektet/, accessed: 1/31/2016.

  3. 3.

    http://www.ukbiobank.ac.uk, accessed: 1/31/2016.

  4. 4.

    http://www.nationale-kohorte.de/, accessed: 1/31/2016.

  5. 5.

    http://www-01.ibm.com/software/analytics/spss/products/statistics/, accessed: 1/31/2016.

  6. 6.

    http://www.r-project.org/ accessed: 1/31/2016.

  7. 7.

    http://www.stata.com/, accessed: 1/31/2016.

  8. 8.

    http://www.tableausoftware.com/, accessed: 1/31/2016.

References

  1. Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Rec. 25(4), 25–29 (1996)

    Article  Google Scholar 

  2. Ahmad, A., Dey, L.: A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl. Eng. 63(2), 503–527 (2007)

    Article  Google Scholar 

  3. Axén, I., Bodin, L., Bergström, G., Halasz, L., Lange, F., Lövgren, P.W., Rosenbaum, A., Leboeuf-Yde, C., Jensen, I.: Clustering patients on the basis of their individual course of low back pain over a six month period. BMC Musculoskelet. Disord. 12, 99–108 (2011)

    Article  Google Scholar 

  4. Beale, L.L., Abellan, J.J., Hodgson, S.S., Jarup, L.L.: Methodologic issues and approaches to spatial epidemiology. Environ. Health Perspect. 116(8), 1105–1110 (2008)

    Article  Google Scholar 

  5. Bendix, F., Kosara, R., Hauser, H.: Parallel sets: visual analysis of categorical data. In: IEEE Symposium on Information Visualization, pp. 133–140 (2005)

    Google Scholar 

  6. Blaas, J., Botha, C.P., Post, F.H.: Interactive visualization of multi-field medical data using linked physical and feature-space views. In: Proceedings of EuroVis, pp. 123–130 (2007)

    Google Scholar 

  7. Busking, S., Botha, C.P., Post, F.H.: Dynamic multi-view exploration of shape spaces. Comput. Graph. Forum 29(3), 973–982 (2010)

    Article  Google Scholar 

  8. Chui, K.K., Wenger, J.B., Cohen, S.A., Naumova, E.N.: Visual analytics for epidemiologists: understanding the interactions between age, time, and disease with multi-panel graphs. PloS One 6(2), e14,683 (2011)

    Article  Google Scholar 

  9. Davies, J.: Parallel set of the titanic data set. http://www.jasondavies.com/parallel-sets/ (2012). Accessed 30 Jan 2014

  10. Donders, A.R., van der Heijden, G.J., Stijnen, T., Moons, K.G.: Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091 (2006)

    Article  Google Scholar 

  11. Engel, K., Toennies, K.D.: Hierarchical vibrations for part-based recognition of complex objects. Pattern Recogn. 43(8), 2681–2691 (2010)

    Article  MATH  Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining (KDD), pp. 226–231 (1996)

    Google Scholar 

  13. Ferrarini, L., Olofsson, H., Palm, W., Vanbuchem, M., Reiber, J., Admiraalbehloul, F.: GAMEs: growing and adaptive meshes for fully automatic shape modeling and analysis. Med. Image Anal. 11(3), 302–314 (2007)

    Article  Google Scholar 

  14. Fletcher, R.H., Fletcher, S.W.: Clinical Epidemiology. Lippincott Williams & Wilkins, Philadelphia (2011)

    Google Scholar 

  15. Genolini, C., Falissard, B.: KmL: k-means for longitudinal data. Comput. Stat. 25(2), 317–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glaßer, S., Lawonn, K., Preim, B.: Visualization of 3D cluster results for medical tomographic image data. In: Proceedings of Conference on Computer Graphics Theory and Applications (VISIGRAPP/GRAPP), pp. 169–176 (2014)

    Google Scholar 

  17. Gloger, O., Kuhn, J., Stanski, A., Völzke, H., Puls, R.: A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images. Magn. Reson. Imaging 28(6), 882–897 (2010)

    Article  Google Scholar 

  18. Gloger, O., Toennies, K.D., Liebscher, V., Kugelmann, B., Laqua, R., Völzke, H.: Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry. IEEE Trans. Med. Imaging 31(2), 312–325 (2012)

    Article  Google Scholar 

  19. Gresh, D.L., Rogowitz, B.E., Winslow, R.L., Scollan, D.F., Yung, C.K.: Weave: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data. In: Proceedings of IEEE Visualization, pp. 489–492 (2000)

    Google Scholar 

  20. Hegenscheid, K., Kühn, J.P., Völzke, H., Biffar, R., Hosten, N., Puls, R.: Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based SHIP study. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren (Röfo) 181(8), 748–759 (2009)

    Article  Google Scholar 

  21. Hermann, M., Schunke, A.C., Klein, R.: Semantically steered visual analysis of highly detailed morphometric shape spaces. In: Proceedings of IEEE Symposium on Biological Data Visualization (BioVis), pp. 151–158 (2011)

    Google Scholar 

  22. Hofman, A., Breteler, M.M.B., van Duijn, C.M., Janssen, H.L.A., Krestin, G.P., Kuipers, E.J., Stricker, B.H.C., Tiemeier, H., Uitterlinden, A.G., Vingerling, J.R., Witteman, J.C.M.: The Rotterdam Study: 2010 objectives and design update. Eur. J. Epidemiol. 24, 553–572 (2009)

    Article  Google Scholar 

  23. Hofman, A., van Duijn, C.M., Franco, O.H., et al.: The Rotterdam Study: 2012 objectives and design update. Eur. J. Epidemiol. 26, 657–686 (2011)

    Article  Google Scholar 

  24. Jerrett, M., Gale, S., Kontgis, C.: Spatial modeling in environmental and public health research. Int. J. Environ. Res. Public Health 7(16), 1302–1329 (2010)

    Article  Google Scholar 

  25. Klemm, P., Lawonn, K., Rak, M., Preim, B., Tönnies, K., Hegenscheid, K., Völzke, H., Oeltze, S.: Visualization and analysis of lumbar spine canal variability in cohort study data. In: Proceedings of Vision, Modeling, Visualization (VMV), pp. 121–128 (2013)

    Google Scholar 

  26. Klemm, P., Frauenstein, L., Perlich, D., Hegenscheid, K., Völzke, H., Preim, B.: Clustering Socio-demographic and medical attribute data in cohort studies. In: Proceedings of Bildverarbeitung für die Medizin (BVM) (2014)

    Google Scholar 

  27. Lee, H., Malaspina, D., Ahn, H., Perrin, M., Opler, M.G., Kleinhaus, K., Harlap, S., Goetz, R., Antonius, D.: Paternal age related schizophrenia (PARS): latent subgroups detected by k-means clustering analysis. Schizophr. Res. 128(1–3), 143–149 (2011)

    Article  Google Scholar 

  28. Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137–1144 (2007)

    Article  Google Scholar 

  29. Marathe, M., Vullikanti, A.K.S.: Computational epidemiology. Commun. ACM 56(7), 88–96 (2013)

    Article  Google Scholar 

  30. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  31. Pearce, N., Merletti, F.: Complexity, simplicity, and epidemiology. Int. J. Epidemiol. 35(3), 515–519 (2006)

    Article  Google Scholar 

  32. Petersen, S.E., Matthews, P.M., Bamberg, F., et al.: Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches. J. Cardiovasc. Magn. Reson. 28, 15–46 (2013)

    Google Scholar 

  33. Petyt, M.: Introduction to Finite Element Vibration Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  34. Preim, U., Glaßer, S., Preim, B., Fischbach, F., Ricke, J.: Computer-aided diagnosis in breast DCE-MRI-quantification of the heterogeneity of breast lesions. Eur. J. Radiol. 81(7), 1532–1538 (2012)

    Article  Google Scholar 

  35. Rak, M., Engel, K., Tönnies, K.D.: Closed-form hierarchical finite element models for part-based object detection. In: Proceedings of Vision, Modeling, Visualization (VMV), pp. 137–144 (2013)

    Google Scholar 

  36. Robertson, M.M., Althoff, R.R., Hafez, A., Pauls, D.L.: Principal components analysis of a large cohort with tourette syndrome. Br. J. Psychiatry 193(1), 31–36 (2008)

    Article  Google Scholar 

  37. Seiler, C., Pennec, X., Reyes, M.: Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. 16(7), 1371–1384 (2012)

    Article  Google Scholar 

  38. Steenwijk, M.D., Milles, J., van Buchem, M.A., Reiber, J.H.C., Botha, C.P.: Integrated visual analysis for heterogeneous datasets in cohort studies. In: Proceedings of IEEE VisWeek Workshop on Visual Analytics in Health Care (2010)

    Google Scholar 

  39. Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph 8(1), 52–65 (2002)

    Article  Google Scholar 

  40. Thew, S., Sutcliffe, A., Procter, R., de Bruijn, O., McNaught, J., Venters, C.C., Buchan, I.: Requirements engineering for e-Science: experiences in epidemiology. IEEE Softw. 26(1), 80–87 (2009)

    Article  Google Scholar 

  41. Turkay, C., Lundervold, A., Lundervold, A.J., Hauser, H.: Hypothesis generation by interactive visual exploration of heterogeneous medical data. In: Proceedings of Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data, pp. 1–12 (2013)

    Google Scholar 

  42. Völzke, H., Baumeister, S.E., Alte, D., Hoffmann, W., Schwahn, C., Simon, P., John, U., Lerch, M.M.: Independent risk factors for gallstone formation in a region with high cholelithiasis prevalence. Digestion 71, 97–105 (2005)

    Article  Google Scholar 

  43. Völzke, H., Alte, D., Schmidt, C., et al.: Cohort profile: the study of health in pomerania. Int. J. Epidemiol. 40(2), 294–307 (2011)

    Article  Google Scholar 

  44. Weaver, C.: Cross-filtered views for multidimensional visual analysis. IEEE Trans. Vis. Comput. Graph. 16(2), 192–204 (2010)

    Article  Google Scholar 

  45. Wittenburg, K., Lanning, T., Heinrichs, M., Stanton, M.: Parallel bargrams for consumer-based information exploration and choice. In: Proceedings of the ACM Symposium on User Interface Software and Technology (UIST), pp. 51–60 (2001)

    Google Scholar 

  46. Ystad, M.: Quantitative structural and functional brain imaging in cognitive aging. Ph.D. thesis, University of Bergen (2010)

    Google Scholar 

  47. Ystad, M., Lundervold, A.J., Wehling, E., Espeseth, T., Rootwelt, H., Westlye, L., Andersson, M., Adolfsdottir, S., Geitung, J., Fjell, A., Reinvang, I., Lundervold, A.: Hippocampal volumes are important predictors for memory function in elderly women. BMC Med. Imaging 9(1), 1–15 (2009)

    Article  Google Scholar 

  48. Ystad, M., Eichele, T., Lundervold, A.J., Lundervold, A.: Subcortical functional connectivity and verbal episodic memory in healthy elderly—resting state fmri study. NeuroImage 52(1), 379–388 (2010)

    Article  Google Scholar 

  49. Zhang, Z., Gotz, D., Perer, A.: Interactive visual patient cohort analysis. In: Proceedings of IEEE VisWeek Workshop on Visual Analytics in Healthcare (2012)

    Google Scholar 

  50. Zhang, Z., Wang, B., Ahmed, F., Ramakrishnan, I., Viccellio, A., Zhao, R., Mueller, K.: The five W’s for information visualization with application to healthcare informatics. IEEE Trans. Vis. Comput. Graph. 19(11), 379–388 (2013)

    Google Scholar 

Download references

Acknowledgements

We want to thank Lisa Fraunstein, David Kilias and David Perlich who supported our analysis of the SHIP data as student workers as well as Marko Rak who provided the detection algorithm for the vertabrae and Myra Spilopoulou for fruitful discussions on clustering and data mining (all University of Magdeburg). We thank Martijn Steenwijk for providing images from his work and Charl Botha for fruitful discussions. Matthias Günther (Fraunhofer MEVIS) explained us quality aspects of MR imaging in epidemiologic studies. This work was supported by the DFG Priority Program 1335: Scalable Visual Analytics. SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grant no. 03ZIK012), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Klemm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Preim, B. et al. (2016). Visual Analytics of Image-Centric Cohort Studies in Epidemiology. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_10

Download citation

Publish with us

Policies and ethics