Skip to main content

The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions

  • Conference paper
  • First Online:
Inductive Logic Programming

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9046))

Abstract

Probabilistic logic languages, such as ProbLog and CP-logic, are probabilistic generalizations of logic programming that allow one to model probability distributions over complex, structured domains. Their key probabilistic constructs are probabilistic facts and annotated disjunctions to represent binary and mutli-valued random variables, respectively. ProbLog allows the use of annotated disjunctions by translating them into probabilistic facts and rules. This encoding is tailored towards the task of computing the marginal probability of a query given evidence (MARG), but is not correct for the task of finding the most probable explanation (MPE) with important applications e.g., diagnostics and scheduling.

In this work, we propose a new encoding of annotated disjunctions which allows correct MARG and MPE. We explore from both theoretical and experimental perspective the trade-off between the encoding suitable only for MARG inference and the newly proposed (general) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic Prolog and its application in link discovery. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2468–2473. AAAI Press (2007)

    Google Scholar 

  2. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391–454 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Poole, D.: Logic programming, abduction and probability. New Gener. Comput. 11, 377–400 (1993)

    Article  MATH  Google Scholar 

  5. Sato, T., Kameya, Y.: A viterbi-like algorithm and EM learning for statistical abduction. In: Proceedings of Workshop on Fusion of Domain Knowledge with Data for Decision Support (2000)

    Google Scholar 

  6. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Logic Prog. 11, 235–262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bragaglia, S., Riguzzi, F.: Approximate inference for logic programs with annotated disjunctions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 30–37. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Fierens, D., Van Den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs using weighted boolean formulas. Theor. Pract. Logic Program. (TPLP 2015) 15(3), 358–401 (2015). doi:10.1017/S1471068414000076

    Article  MathSciNet  Google Scholar 

  9. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference in probabilistic logic programs using weighted CNF’s. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 211–220 (2011)

    Google Scholar 

  10. Fierens, D., Van den Broeck, G., Bruynooghe, M., De Raedt, L.: Constraints for probabilistic logic programming. In: Roy, D., Mansinghka, V., Goodman, N., (eds.) Proceedings of the NIPS Probabilistic Programming Workshop (2012)

    Google Scholar 

  11. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP95), pp. 715–729. MIT Press (1995)

    Google Scholar 

  12. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of causal probabilistic events and its relation to logic programming. Theory Pract. Logic Prog. 9, 245–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gutmann, B.: On continuous distributions and parameter estimation in probabilistic logic programs. Ph.D thesis, KULeuven (2011)

    Google Scholar 

  14. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  15. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  16. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009). Chapter 12

    Book  MATH  Google Scholar 

  17. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Proceedings of Neural Information Processing Systems (2003)

    Google Scholar 

  18. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)

    Article  Google Scholar 

  19. Huang, J.: Solving map exactly by searching on compiled arithmetic circuits. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), pp. 143–148 (2006)

    Google Scholar 

  20. Meert, W.: Inference and learning for directed probabilistic logic models. Ph.D thesis, Informatics Section, Department of Computer Science, Faculty of Engineering Science. Blockeel, Hendrik (supervisor) (2011)

    Google Scholar 

  21. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In: Hermenegildo, M.V., Schaub, T. (eds.) ICLP (Tech. Communications). Vol. 7 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 124–133 (2010)

    Google Scholar 

  22. Darwiche, A.: New advances in compiling CNF into decomposable negation normal form. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 328–332 (2004)

    Google Scholar 

  23. Darwiche, A.: A compiler for deterministic, decomposable negation normal form. In: Dechter, R., Sutton, R.S. (eds.) AAAI/IAAI, pp. 627–634. AAAI Press/MIT Press (2002)

    Google Scholar 

  24. Meert, W., Struyf, J., Blockeel, H.: CP-logic theory inference with contextual variable elimination and comparison to BDD based inference methods. In: Proceedings of 19th International Conference of Inductive Logic Programming, pp. 96–109 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitar Shterionov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shterionov, D., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., Janssens, G. (2015). The Most Probable Explanation for Probabilistic Logic Programs with Annotated Disjunctions. In: Davis, J., Ramon, J. (eds) Inductive Logic Programming. Lecture Notes in Computer Science(), vol 9046. Springer, Cham. https://doi.org/10.1007/978-3-319-23708-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23708-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23707-7

  • Online ISBN: 978-3-319-23708-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics