Skip to main content

Automated 3D Lumbar Intervertebral Disc Segmentation from MRI Data Sets

  • Chapter
  • First Online:
Computational Radiology for Orthopaedic Interventions

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 23))

Abstract

This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modic M, Ross J (2007) Lumbar degenerative disk disease. Radiology 1:43–61

    Article  Google Scholar 

  2. Parizel P, Goethem JV, den Hauwe LV, Voormolen M (2007) Degenerative disc disease. In Van Goethem J (ed) Spinal imaging—diagnostic imaging of the spine and spinal cord. Springer, Berlin, pp 122–133

    Google Scholar 

  3. Tsai M, Jou J, Hsieh M (2002) A new method for lumbar herniated intervertebral disc diagnosis based on image analysis of transverse sections. Comput Med Imaging Graph 26:369–380

    Article  Google Scholar 

  4. Niemelainen R, Videman T, Dhillon S, Battie M (2008) Quantitative measurement of intervertebral disc signal using MRI. Clin Radiol 63:252–255

    Article  Google Scholar 

  5. Schmidt S, Kappes JH, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnorr C (2007) Spine detection and labeling using a parts-based graphical model. In: Karssemeijer N, BL (ed) IPMI 2007. Springer, Berlin, pp 122–133

    Google Scholar 

  6. Corso J, Alomari R, Chaudhary V (2008) Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Metaxas D (ed) MICCAI 2008. Springer, Berlin, pp 202–210

    Google Scholar 

  7. Chevrefils C, Cheriet F, Aubin C, Grimard G (2009) Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans Inf Technol Biomed 13:608–620

    Article  Google Scholar 

  8. Michopoulou S, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek A (2009) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231

    Article  Google Scholar 

  9. Ayed IB, Punithakumar K, Garvin G, Romano W, Li S (2011) Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: Szekely G, HH (ed) IPMI 2011. Springer, Berlin, pp 221–232

    Google Scholar 

  10. Neubert A, Fripp J, Schwarz R, Lauer L, Salvado O, Crozier S (2012) Automated detection, 3d segmentation and analysis of high resolution spine MR images using statistical shape models. Phys Med Biol 57:8357–8376

    Article  Google Scholar 

  11. Law M, Tay K, Leung A, Garvin G, Li S (2013) Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med Image Anal 17:43–61

    Article  Google Scholar 

  12. Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In Ayache N (ed) MICCAI 2012. Springer, Berlin, pp 590–598

    Google Scholar 

  13. Glocker B, Zikic D, Konukoglu E, Haynor D, Criminisi A (2013) Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In Mori K (ed) MICCAI 2013. Springer, Berlin, pp 262–270

    Google Scholar 

  14. Dong X, Lu H, Sakurai Y, Yamagata H, Zheng G, Reyes M (2010) Automated intervertebral disc detection from low resolution, sparse MRI images for the planning of scan geometries. In: Wang F, Yan P, Suzuki K, Shen D (eds) MLMI2010. Springer, Berlin, pp 10–17

    Google Scholar 

  15. Dong X, Zheng G (2015) Automated 3D lumbar intervertebral disc segmentation from MRI data sets. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging. Lecture notes in computational vision and biomechanics, vol 20. Springer, Berlin, pp 131–142

    Google Scholar 

  16. Risser L, Vialard FX, Wolz R, Murgasova M, Holm DD, Rueckert D (2011) Simultaneous multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans Med Imaging 30:1746–1759

    Article  Google Scholar 

  17. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math 4:617–694

    MathSciNet  Google Scholar 

  18. Sommer S, Nielsen M, Lauze F, Pennec X (2011) A multi-scale kernel bundle for LDDMM: towards sparse deformation description across space and scales. In: Szekely G, HH (ed) IPMI2011. Springer, Berlin, pp 624–635

    Google Scholar 

  19. Beg MF, Miller MI, Trouv A, Younes L (2005) Computing large deformation metric mappings via geodesic flow of diffeomorphisms. Int J Comput Vision 61:139–157

    Article  Google Scholar 

  20. Miller MI, Trouv A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vision 24:209–228

    Article  MathSciNet  Google Scholar 

  21. Bruveris M, Gay-Balmaz F, Holm DD, Ratiu TS (2011) The momentum map representation of images. J Nonlinear Sci 21:115–150

    Article  MATH  MathSciNet  Google Scholar 

  22. Hart GL, Zach C, Niethammer M (2009) An optimal control approach for deformable registration. In: CVPR2009, pp 9–16

    Google Scholar 

  23. Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput Vision 97:229–241

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dong, X., Zheng, G. (2016). Automated 3D Lumbar Intervertebral Disc Segmentation from MRI Data Sets. In: Zheng, G., Li, S. (eds) Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-23482-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23482-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23481-6

  • Online ISBN: 978-3-319-23482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics