Skip to main content

Signal Transduction Cascades Regulating Differentiation and Virulence in Botrytis cinerea

  • Chapter
  • First Online:
Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Fungi are eukaryotic organisms that are more closely related to animals than to plants and algae, and therefore fungal cells share important features with mammalian cells. This is perhaps most apparent in the signaling cascades that mediate the communication between environmental signals and the cellular machinery regulating developmental programs. Conserved signaling systems present in all eukaryotes, from yeast to mammals, comprise cAMP and Ca2+ as second messengers, and further include Ras superfamily proteins and mitogen-activated (MAP) kinases. Apart from that, filamentous fungi evolved a light response system allowing for use of light and its absence, respectively, as environmental cues to control development and secondary metabolism. Recent progress in understanding the regulatory networks in B. cinerea by functional characterization of key components of the signal transduction pathways is summarized with emphasis on their impact on differentiation and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amselem J, Cuomo CA, Van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An B, Li B, Qin G et al (2015) Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genet Biol 75:46–55

    Article  CAS  PubMed  Google Scholar 

  • Antal Z, Rascle C, Cimerman A et al (2012) The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology. PLoS One 7:e48134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramburu J, Heitman J, Crabtree GR (2004) Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep 5:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Vera TM, Vanhauwe J, Thomas TO et al (2003) Insights into G protein structure, function and regulation. Endocr Rev 24:765–781

    Article  CAS  PubMed  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA et al (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8:e84223

    Article  PubMed  PubMed Central  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Kaandorp JA, Sloot PM et al (2009) Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res 9:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Cunningham KW (2011) Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 50:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyert MS (2003) Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Döhlemann G, Berndt P, Hahn M (2006) Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–836

    Article  Google Scholar 

  • Epton HAS, Richmond DV (1980) Formation, structure and germination of conidia. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 41–83

    Google Scholar 

  • Fassler JS, West AH (2013) Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Eukaryot Cell 12:1052–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giesbert S, Schumacher J, Kupas V et al (2012) Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A protein phosphatase and a SPT3 transcription factor have significant impact on virulence. Mol Plant Microbe Interact 25:481–495

    Article  CAS  PubMed  Google Scholar 

  • Giesbert S, Siegmund U, Schumacher J et al (2014) Functional analysis of BcBem1 and its interaction partners in B. cinerea: impact on differentiation and virulence. Plos ONE 9:e95172

    Article  PubMed  PubMed Central  Google Scholar 

  • Gioti A, Simon A, Le Pêcheur P et al (2006) Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. J Mol Biol 358:372–386

    Article  CAS  PubMed  Google Scholar 

  • Gioti A, Pradier JM, Fournier E et al (2008) A Botrytis cinerea emopamil binding domain protein, required for full virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes. Eukaryot Cell 7:368–378

    Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun MH et al (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • Harren K, Tudzynski B (2013) Cch1 and Mid1 are functionally required for vegetative growth under low-calcium conditions in the phytopathogenic ascomycete Botrytis cinerea. Eukaryot Cell 12:712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harren K, Schumacher J, Tudzynski B (2012) The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS One 7:e41761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harren K, Brandhoff B, Knödler M et al (2013) The high-affinity phosphodiesterase BcPde2 has impact on growth, differentiation and virulence of the phytopathogenic ascomycete Botrytis cinerea. PLoS One 8:e78525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller J, Ruhnke N, Espino J et al (2012) The MAP kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Mol Plant Microbe Interact 25:802–816

    Article  CAS  PubMed  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity. Research Branch, Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Klimpel A, Schulze Gronover C, Williamson B et al (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for pathogenicity. Mol Plant Pathol 3:439–450

    Article  CAS  PubMed  Google Scholar 

  • Kokkelink L, Minz A, Al-Masri M et al (2011) The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genet Biol 48:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A et al (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5:e1000696

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni RD, Thon MR, Pan H et al (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427

    Article  CAS  PubMed  Google Scholar 

  • Leroch M, Kleber A, Silva E et al (2013) Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. Eukaryot Cell 12:614–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroch M, Mueller N, Hinsenkamp I et al (2015) The signaling mucin Msb2 regulates surface sensing and host penetration via BMP1-MAP kinase signaling in Botrytis cinerea. Mol Plant Pathol 16:787–798, in press. doi:10.1111/mpp.12234

    Google Scholar 

  • Li L, Wright SJ, Krystofova S et al (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Leroux P, Fillinger S (2008) The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicar-boximide- and phenylpyrrole-resistance. Fungal Genet Biol 45:1062–1074

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Soulié MC, Perrino C et al (2011) The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genet Biol 48:377–387

    Article  CAS  PubMed  Google Scholar 

  • Lorbeer JW (1980) Variation in Botrytis and Botryotinia. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 19–39

    Google Scholar 

  • Martín H, Flández M, Nombela C et al (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16

    Article  PubMed  Google Scholar 

  • Meléndez HG, Billon-Grand G, Fèvre M et al (2009) Role of the Botrytis cinerea FKBP12 ortholog in pathogenic development and in sulfur regulation. Fungal Genet Biol 46:308–320

    Article  PubMed  Google Scholar 

  • Michielse CB, Becker M, Heller J et al (2011) The Botrytis cinerea Reg1, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant Microbe Interact 224:1074–1085

    Article  Google Scholar 

  • Minz Dub A, Kokkelink L, Tudzynski B et al (2013) Involvement of Botrytis cinerea small GTPases BcRAS1 and BcRAC in differentiation, virulence, and the cell cycle. Eukaryot Cell 12:1609–1618

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanni V, Schumacher J, Giacomelli L et al (2014) Vv-AMP2, a grapevine flower specific defensin capable of Botrytis cinerea growth inhibition: insights into its mode of action. Plant Pathol 63:899–910

    Article  CAS  Google Scholar 

  • Perez P, Rincón SA (2010) Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J 426:243–253

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca MG, Weichert M, Siegmund U et al (2012) Germling fusion via conidial anastomosis tubes in the grey mould B. cinerea requires NADPH oxidase activity. Fungal Biol 116:379–387

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C et al (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  CAS  PubMed  Google Scholar 

  • Rui O, Hahn M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol 8:173–184

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi P (2012) The cyclic AMP pathway. Cold Spring Harb Perspect Biol 4:a011148

    Article  PubMed  PubMed Central  Google Scholar 

  • Schamber A, Leroch M, Diwo J et al (2010) The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol 11:105–119

    Article  CAS  PubMed  Google Scholar 

  • Schulze Gronover C, Kasulke D, Tudzynski P et al (2001) The role of G protein alpha subunits in the infection process of Botrytis cinerea. Mol Plant Microbe Interact 14:1293–1302

    Article  Google Scholar 

  • Schulze Gronover C, Schorn C, Tudzynski B (2004) Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant Microbe Interact 17:537–546

    Article  PubMed  Google Scholar 

  • Schulze Gronover C, Schumacher J, Hantsch P et al (2005) A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls the expression of GST-encoding genes, but is not essential for pathogenicity. Mol Plant Pathol 6:243–256

    Article  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, Tudzynski P (2012) Morphogenesis and infection in Botrytis cinerea. In: Pérez-Martín J, Di Pietro A (eds) Topics in current genetics, vol. Morphogenesis and pathogenicity in fungi. Springer, Berlin, pp 225–241

    Chapter  Google Scholar 

  • Schumacher J, de Larrinoa IF, Tudzynski B (2008a) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7:584–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Kokkelink L, Huesmann C et al (2008b) The cAMP-dependent signalling pathway and its role in conidial germination, growth and virulence of the grey mould fungus Botrytis cinerea. Mol Plant Microbe Interact 21:1443–1459

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, Viaud M, Simon A et al (2008c) The Gα subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 67:1027–1250

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, Pradier JM, Simon A et al (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS One 7:e47840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Gautier A, Morgant G et al (2013) A functional bikaverin biosynthesis gene cluster in rare strains of B. cinerea is positively controlled by VELVET. PLoS One 8:e53729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC et al (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC et al (2015) The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulence. Mol Plant Microbe Interact 28:659–674

    Article  CAS  PubMed  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B et al (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    Article  PubMed  Google Scholar 

  • Segmüller N, Kokkelink L, Giesbert S et al (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819

    Article  PubMed  Google Scholar 

  • Siegmund U, Heller J, Van Kan JA et al (2013) The NADPH oxidase complexes in B. cinerea: evidence for a close association with the ER and the tetraspanin Pls1. PLoS One 8:e55879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegmund U, Marschall R, Tudzynski P (2014) BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol Microbiol 95:988–1005

    Article  PubMed  Google Scholar 

  • Simon A, Dalmais B, Morgant G et al (2013) Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 52:9–19

    Article  CAS  PubMed  Google Scholar 

  • Stie J, Fox D (2008) Calcineurin regulation in fungi and beyond. Eukaryot Cell 7:177–186

    Article  CAS  PubMed  Google Scholar 

  • Tanaka C, Izumitsu K (2010) Two-component signaling system in filamentous fungi and the mode of action of dicarboximide and phenylpyrrol fungicides. In: Carisse O (ed) Fungicides, vol I. InTech, Rijeka, pp 523–538

    Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  CAS  PubMed  Google Scholar 

  • Temme N, Oeser B, Massaroli M et al (2012) BcAtf1, a global regulator, controls various differentiation processes and toxin production in Botrytis cinerea. Mol Plant Pathol 13:704–718

    Article  CAS  PubMed  Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y et al (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50:1451–1465

    Article  CAS  PubMed  Google Scholar 

  • Viaud M, Fillinger S, Liu W et al (2006) A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact 19:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Viefhues A, Schlathoelter I, Simon A et al (2015) Unravelling the function of the response regulator BcSkn7 in the stress signaling network of Botrytis cinerea. Eukaryot Cell 14:636–651, in press. doi:10.1128/EC.00043-15

    Google Scholar 

  • Wang Y, Geng Z, Jiang D et al (2013) Characterizations and functions of regulator of G protein signaling (RGS) in fungi. Appl Microbiol Biotechnol 97:7977–7987

    Article  CAS  PubMed  Google Scholar 

  • Weeks G, Spiegelman GB (2003) Roles played by Ras subfamily proteins in the cell and developmental biology of microorganisms. Cell Signal 15:901–909

    Article  CAS  PubMed  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  • Willardson BM, Howlett AC (2007) Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal 19:2417–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SJ, Inchausti R, Eaton CJ et al (2011) RIC8 is a guanine-nucleotide exchange factor for Gα that regulates growth and development in Neurospora crassa. Genetics 189:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Yang Q, Sundin GW et al (2010) The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol 47:753–760

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Yang Q, Jiang J et al (2011) Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl Microbiol Biotechnol 90:215–226

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Yan L, Gu Q et al (2012) The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Appl Microbiol Biotechnol 96:481–492

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen Y, Ma Z (2013a) Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Fungal Genet Biol 50:63–71

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Jiang J, Mayr C et al (2013b) Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea. Environ Microbiol 15:2696–2711

    CAS  PubMed  Google Scholar 

  • Yang Q, Yu F, Yin Y et al (2013c) Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. PLoS One 8:e61307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Yin D, Yin Y et al (2015) The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Mol Plant Pathol 16:276–287

    Article  CAS  PubMed  Google Scholar 

  • Yu JH (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44:145–154

    CAS  PubMed  Google Scholar 

  • Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Campbell M, Murphy J et al (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 13:724–732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to B. Tudzynski, P. Tudzynski, U. Siegmund, A. Viefhues and K. Beckervordersandfort for fruitful discussions, and M. Leroch, M. Hahn, A. Sharon, N. Poussereau, M. Choquer, C. Bruel and S. Fillinger for sharing unpublished data. Financial support from the German Research Foundation (DFG, grant SCHU 2833/2-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Schumacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schumacher, J. (2016). Signal Transduction Cascades Regulating Differentiation and Virulence in Botrytis cinerea . In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_13

Download citation

Publish with us

Policies and ethics