Skip to main content

The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9250))

Included in the following conference series:

Abstract

With the ongoing development of neuroimaging technology, neuroimaging classification has become a popular and challenging topic. The high dimension and small sample size characteristics pose many challenges to neuroimaging classification. The traditional neuroimaging classification solutions are tensor-based models, which may not fully consider the structural information and can’t mine the essential features of the input data. Considering the complicated properties of the neuroimaging data, a deep learning based algorithm—the hierarchical convolutional sparse auto-encoder (HCSAE) considering all dimensional information together is proposed in this paper. The HCSAE treats different convolutional sparse auto-encoder (CSAE) in an unsupervised hierarchical mode, where the CSAE extracts the essential features of the input by the sparse auto-encoder (SAE) and encodes the inputs in a convolutional manner, which helps to extract efficient and robust features and conserve abundant detail information for the neuroimaging classification. The proposed algorithm was verified by three human brain fMRI classification datasets, and showed a great potential compared with the traditional classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Craddock, R., James, G., Holtzheimer, P., Hu, X., Mayberg, H.: A whole brain fmri atlas generated via spatially constrained spectral clustering. Human Brain Mapping (2012)

    Google Scholar 

  2. Bihan, D.L., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: Brain, mind, and the evolution of connectivity. Radiology 161(2), 401–407 (1986)

    Article  Google Scholar 

  3. Basser, P., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor fmri. J. of Magnetic Resonance, Series B 111(3), 209–219 (1996)

    Article  Google Scholar 

  4. McKeown, M., Makeig, S., Brown, G., Jung, T., Kindermann, S., Bell, A., Sejnowski, T.: Analysis of fmri data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)

    Article  Google Scholar 

  5. He, L., Kong, X., Yu, P., Ragin, A., Hao, Z.: Dusk: a dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In: SDM (2014)

    Google Scholar 

  6. Sporns, O., Tononi, G., Kotter, R.: The human connectome: A structural description of the human brain. PLoS Computational Biology (2005)

    Google Scholar 

  7. Bengio, Y.: Learning Deep Architectures for AI, Foundations and Trends in Machine Learning (2009)

    Google Scholar 

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–506 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ng, A.: Sparse autoencoder, CS294A Lecture notes on Stanford University (2010)

    Google Scholar 

  10. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press (1995)

    Google Scholar 

  11. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580 (2012)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proc. Of NIPS (2012)

    Google Scholar 

  14. Lee, T.S., Mumford, D., Romero, R., et al.: The role of the primary visual cortex in higher level vision. Vision Research 38(15–16), 2429–2454 (1998)

    Article  Google Scholar 

  15. LeRoux, N., Bengio, Y.: Deep belief networks are compact universal approximations. Neural Comput. 22(8), 2192–2207 (2010)

    Article  MathSciNet  Google Scholar 

  16. Zhang, F., Du, B., Zhang, L.: Saliency-Guided Unsupervised Feature Learning for Scene Classification. IEEE Transactions on Geoscience and Remote Sensing 53, 2175–2184 (2014)

    Article  Google Scholar 

  17. Wang, X., Foryt, P., Ochs, R., Chung, J., Wu, Y., Parrish, T., Ragin, A.: Abnormalities in resting-state functional connectivity in early human immunodeficiency virus infection. Brain Connectivity 1(3), 207 (2011)

    Article  Google Scholar 

  18. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proc .Int. Conf. Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Han, X., Zhong, Y., He, L., Yu, P.S., Zhang, L. (2015). The Unsupervised Hierarchical Convolutional Sparse Auto-Encoder for Neuroimaging Data Classification. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics