Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 27))

Abstract

The global popularity of functional foods containing probiotics has generated increased interest in developing protective materials for the bacteria during food processing, storage and consumption. To confer beneficial effects to the host, a probiotic product should contain at least 106 CFU/g or ml of the product. Probiotic microorganisms are sensitive to food processing environments and to conditions in the gastrointestinal tract. Microencapsulation technology can be used to protect the probiotic bacteria against adverse conditions. This chapter discusses the potential of using various microencapsulation techniques to protect probiotic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari K, Mustapha A, Grün IU (2003) Survival and metabolic activity of microencapsulated Bifidobacterium longum in stirred yogurt. J Food Sci 68(1):275–280

    Article  CAS  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18(5):240–251

    Article  CAS  Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290(1–2):45–54

    Article  CAS  PubMed  Google Scholar 

  • Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15(4):399–409

    Article  CAS  Google Scholar 

  • Andersson H, Asp NG, Bruce A, Roos S, Wadstrom T, Wold AE (2001) Health effects of probiotics and prebiotics: a literature review on human studies. Scand J Nutr 45:58–75

    Google Scholar 

  • Bhandari B, Kamlesh C, Patel KC, Chen XD (2008) Spray drying of food materials – process and product characteristics. In: Chen XD, Mujumdar AS (eds) Drying technologies in food processing. Wiley, New York, pp 113–159

    Google Scholar 

  • Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104(4):467–483

    Article  CAS  Google Scholar 

  • Capela P, Hay TKC, Shah NP (2007) Effect of homogenisation on bead size and survival of encapsulated probiotic bacteria. Food Res Int 40(10):1261–1269

    Article  CAS  Google Scholar 

  • Castroa GR, Chenb J, Panilaitisc B, Kapland DL (2009) Emulsan–alginate beads for protein adsorption. J Biomater Sci 20(4):411–426

    Article  Google Scholar 

  • Champagne CP, Lacroix C, Sodini-Gallot I (1994) Immobilized cell technologies for the dairy industry. Crit Rev Biotechnol 14(2):109–134

    Article  CAS  PubMed  Google Scholar 

  • Chavez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol 25(7):119–1201

    Google Scholar 

  • Chen L, Subirade M (2007) Effect of preparation conditions on the nutrient release properties of alginate–whey protein granular microspheres. Eur J Pharm Biopharm 65(3):354–362. doi:10.1016/j.ejpb.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96(5):1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Crittenden R, Laitila A, Forssell P, Matto J, Saarela M, Mattila-Sandholm T, Myllarinen P (2001) Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl Environ Microbiol 67(8):3469–3475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302

    Article  Google Scholar 

  • Desmond C, Stanton C, Fitzgerald G, Collins K, Ross R (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11(10):801–808

    Article  Google Scholar 

  • Desmond C, Ross RP, O’Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93(6):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Ding WK, Shah NP (2009) An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J Food Sci 74(2):M53–M61

    Article  CAS  PubMed  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15(10):973–988

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2012) Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, Chap. 4. Woodhead, London, pp 73–109

    Chapter  Google Scholar 

  • FAO/WHO (2002) ‘Guidelines for evaluation of probiotics in food’. In: Working group report on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, 30 Apr and 1 May 2002. Food and Agricultural Organisation of the United Nations/World Health Organisation, pp 1–11

    Google Scholar 

  • Fichtali J, Namal Senanayake SPJ (2010) Development and commercialization of microalgae-based functional lipids. In: Smith J, Charter EA (eds) Functional food product development, Chap. 10. Wiley, New York, pp 206–228

    Chapter  Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66(6):2605–2612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardiner GE, Bouchier P, O’Sullivan E, Kelly J, Kevin Collins J, Fitzgerald G, Ross RP, Stanton C (2002) A spray-dried culture for probiotic Cheddar cheese manufacture. Int Dairy J 12(9):749–756

    Article  CAS  Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121

    Article  CAS  Google Scholar 

  • Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ (1993) Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnol Bioeng 42(10):1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19(1):35–45

    Article  CAS  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2009a) Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll 23(7):1670–1677

    Article  CAS  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2009b) Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 19(2):77–84

    Article  CAS  Google Scholar 

  • Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chem 111(1):50–55

    Article  CAS  Google Scholar 

  • Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73(Suppl):1142S–1146S

    CAS  PubMed  Google Scholar 

  • Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73(Suppl):444S–450S

    CAS  PubMed  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Iss Intest Microbiol 3(2):39–48

    CAS  Google Scholar 

  • Kailasapathy K, Chin J (2000) Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol 78(1):80–88

    Article  CAS  PubMed  Google Scholar 

  • Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079

    Article  PubMed  Google Scholar 

  • Koo SM, Cho YH, Huh CS, Baek YJ, Park J (2001) Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J Microbiol Biotechnol 11(3):376–383

    CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13(1):3–13

    Article  CAS  Google Scholar 

  • Lahtinen SJ, Ouwehand AC, Salminen SJ, Forssell P, Myllärinen P (2007) Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol 44(5):500–505

    Article  CAS  PubMed  Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74(1–2):79–86

    Article  PubMed  Google Scholar 

  • Maltais A, Remondetto GE, Gonzalez R, Subirade M (2005) Formation of soy protein isolate cold-set gels: protein and salt effects. J Food Sci 70(1):C67–C73

    Article  CAS  Google Scholar 

  • Medina-Torres L, Garcia-Cruz EE, Calderas FJ, González Laredo RF, Sánchez-Olivares G, Gallegos-Infante JA, Rocha-Guzmán NE, Rodríguez-Ramírez J (2013) Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT-Food Sci Technol 50(2):642–650

    Article  CAS  Google Scholar 

  • Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP (2008) Anhydrobiotics: the challenges of drying probiotic cultures. Food Chem 106(4):1406–1416

    Article  CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: a review. J Microbiol Methods 66(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Mortazavian A, Razavi SH, Ehsan MR, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol 5(1):1–18

    CAS  Google Scholar 

  • Nigam SC, Tsao IF, Sakoda A, Wang HY (1988) Techniques for preparing hydrogel membrane capsules. Biotechnol Techn 2(4):271–276

    Article  CAS  Google Scholar 

  • O’Riordan K, Andrews D, Buckle K, Conway P (2001) Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol 91(6):1059–1066

    Article  PubMed  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Peighambardoust SH, Golshan Tafti A, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224

    Article  CAS  Google Scholar 

  • Picot A, Lacroix C (2003) Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. Int Dairy J 13(6):455–462

    Article  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14(6):505–515

    Article  CAS  Google Scholar 

  • Roff CF, Foegeding EA (1996) Dicationic-induced gelation of pre-denatured whey protein isolate. Food Hydrocoll 10(2):193–198

    Article  CAS  Google Scholar 

  • Rokka S, Rantamaki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231(1):1–12

    Article  CAS  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Saarela M, Mogensen G, Fonde F, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  PubMed  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23(2):302–315

    Article  CAS  PubMed  Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2005) Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99(3):493–501

    Article  CAS  PubMed  Google Scholar 

  • Solanki HK, Pawar DD, Shah DA, Prajapati VD, Jani GK, Mulla AM, Thakar PM (2013) Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. Biomed Res Int 2013:21

    Article  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62(1-2):47–55

    Article  CAS  PubMed  Google Scholar 

  • Teixeira P, Castro H, Kirby R (1995a) Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J Appl Microbiol 78(4):456–462

    Google Scholar 

  • Wang YC, Yu RC, Chou CC (2004) Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int J Food Microbiol 93(2):209–217

    Article  PubMed  Google Scholar 

  • Ying DY, Phoon MC, Sanguansri L, Weerakkody R, Burgar I, Augustin MA (2010) Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. J Food Sci 75(9):E588

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Mutukumira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mutukumira, A.N., Ang, J., Lee, S.J. (2015). Microencapsulation of Probiotic Bacteria. In: Liong, MT. (eds) Beneficial Microorganisms in Food and Nutraceuticals. Microbiology Monographs, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-23177-8_3

Download citation

Publish with us

Policies and ethics