Skip to main content

Abstract

Imaging in a differential pumped environmental TEM (ETEM) results in general in a degradation of the image quality. Scattering of electrons by gas molecules in the pressurized volume between the pole pieces blurs the image and decreases the signal-to-noise ratio of the acquired images. The somewhat simple picture of a plane wave interacting with the sample of interest is no longer valid. Furthermore, the exit wave from the sample is altered by scattering events taking place after the sample in the direction of propagation. In this chapter, the effect of the increased gas pressure between the pole pieces in an aberration-corrected high-resolution transmission electron microscope is discussed in order to shine some light on the additional phenomena occurring in ETEM compared to conventional HRTEM. Both direct effects on the image quality and more indirect effects rising from gas ionization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.M. Ajayan, L.D. Marks, Experimental-evidence for quasimelting in small particles. Phys. Rev. Lett. 63(3), 279–282 (1989)

    Article  Google Scholar 

  • R. Belkorissat, A.E.D. Kadoun, M. Dupeyrat, B. Khelifa, C. Mathieu, Direct measurement of electron beam scattering in the low vacuum SEM. Microchimica Acta 147(3), 135–139 (2004). doi:10.1007/s00604-004-0182-x

    Google Scholar 

  • M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3) (National Institute of Standards and Technology, Gaithersburg, 2005)

    Google Scholar 

  • A.N. Bright, K. Yoshida, N. Tanaka, Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas. Ultramicroscopy 124, 46–51 (2013). doi:10.1016/j.ultramic.2012.08.007

    Article  Google Scholar 

  • M. Cabié, S. Giorgio, C.R. Henry, M.R. Axet, K. Philippot, B. Chaudret, Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment. J. Phys. Chem. C 114(5), 2160–2163 (2010). doi:10.1021/jp906721g

    Article  Google Scholar 

  • F. Cavalca, A.B. Laursen, B. Kardynal, R.E. Dunin-Borkowski, S. Dahl, J.B. Wagner, T.W. Hansen, F. Cavalca, A.B. Laursen, B. Kardynal, R.E. Dunin-Borkowski, S. Dahl, J.B. Wagner, T.W. Hansen, In situ transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology 23(7), 075705 (2012). doi:10.1088/0957-4484/23/7/075705

    Article  Google Scholar 

  • F. Cavalca, A.B. Laursen, J.B. Wagner, C.D. Damsgaard, I. Chorkendorff, T.W. Hansen, Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. Chemcatchem 5(9), 2667–2672 (2013)

    Article  Google Scholar 

  • P.M.F.J. Costa, T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, Imaging the oxidation of ZnS encapsulated in carbon nanotubes. Chem. Eur. J 16(39), 11809–11812 (2010). doi:10.1002/chem.201001301

    Article  Google Scholar 

  • J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108(9), 993–998 (2008). doi:10.1016/j.ultramic.2008.04.014

    Article  Google Scholar 

  • G.D. Danilatos, Foundations of Environmental Scanning Electron Microscopy. Advances in Electronics and Electron Physics, vol. 71 (Academic Press, Boston, 1988), pp. 109–250

    Google Scholar 

  • G. Danilatos, J. Rattenberger, V. Dracopoulos, Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 242(2), 166–180 (2011). doi:10.1111/j.1365-2818.2010.03455.x

    Article  Google Scholar 

  • A.T. DeLaRiva, T.W. Hansen, S.R. Challa, A.K. Datye, In situ transmission electron microscopy of catalyst sintering. J. Catal. 308, 291–305 (2013). doi:10.1016/j.jcat.2013.08.018

    Article  Google Scholar 

  • L.D.L. Duchstein, C.D. Damsgaard, T.W. Hansen, J.B. Wagner, Low-pressure ETEM studies of Au assisted MgO nanorod growth. J. Phys. Conf. Ser. 522, 012010 (2014). doi:10.1088/1742-6596/522/1/012010

    Article  Google Scholar 

  • R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York, 1996)

    Book  Google Scholar 

  • R.F. Egerton, R. McLeod, F. Wang, M. Malac, Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8), 991–997 (2010). doi:10.1016/j.ultramic.2009.11.003

    Article  Google Scholar 

  • I.Y. Fugol, V.N. Samovaro, M.G. Starkov, Electron-ion recombination and diffusion in a cryogenic helium plasma. Sov. Phys. JETP USSR 33(5), 887 (1971)

    Google Scholar 

  • M. Gajdardziska-Josifovska, R. Sharma, Interaction of oxide surfaces with water: Environmental transmission electron microscopy of MgO hydroxylation. Microsc. Microanal. 11(6), 524–533 (2005). doi:10.1017/s1431927605050403

    Article  Google Scholar 

  • P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.1126/science.1069325

    Article  Google Scholar 

  • T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski, Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol. 26(11), 1338–1344 (2010). doi:10.1179/026708310X12756557336355

    Article  Google Scholar 

  • T.W. Hansen, J.B. Wagner, T.W. Hansen, J.B. Wagner, Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 18(4), 684–690 (2012). doi:10.1017/S1431927612000293

    Article  Google Scholar 

  • T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res 46(8), 1720–1730 (2013)

    Article  Google Scholar 

  • Q. Jeangros, A. Faes, J.B. Wagner, T.W. Hansen, U. Aschauer, J. Van Herle, A. Hessler-Wyser, R.E. Dunin-Borkowski, In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater. 58(14), 4578–4589 (2010). doi:10.1016/j.actamat.2010.04.019

    Article  Google Scholar 

  • C.L. Jia, S.B. Mi, J. Barthel, D.W. Wang, R.E. Dunin-Borkowski, K.W. Urban, A. Thust, Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat. Mater. (2014). doi:10.1038/nmat4087

    Google Scholar 

  • J.R. Jinschek, S. Helveg, Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43(11), 1156–1168 (2012)

    Article  Google Scholar 

  • S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eutectic temperature. Science 316(5825), 729–732 (2007). doi:10.1126/science.1139105

    Article  Google Scholar 

  • T. Kizuka, Formation and structural evolution of magnesium oxide clusters under electron irradiation. Jpn. J. Appl. Phys. Pt. 2: Lett 40(10A) (2001)

    Google Scholar 

  • Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, S. Takeda, Intrinsic catalytic structure of gold nanoparticles supported on TiO2. Angew. Chem. Int. Ed. Engl. 124(31), 7849–7853 (2012)

    Article  Google Scholar 

  • F. Lenz, Zur Streuung Mittelschneller Elektronen in Kleinste Winkel. Z. Naturforsch. A 9(3), 185–204 (1954)

    Article  Google Scholar 

  • P. Li, J. Liu, N. Nag, P.A. Crozier, In situ preparation of Ni–Cu/TiO2 bimetallic catalysts. J. Catal. 262(1):73–82 (2009). doi:http://dx.doi.org/10.1016/j.jcat.2008.12.001

    Google Scholar 

  • O. Mansour, K. Aidaoui, A.E.D. Kadoun, L. Khouchaf, C. Mathieu, Monte Carlo simulation of the electron beam scattering under gas mixtures environment in an HPSEM at low energy. Vacuum 84(4), 458–463 (2009). doi:10.1016/j.vacuum.2009.09.004

    Article  Google Scholar 

  • O. Mansour, A. Kadoun, L. Khouchaf, C. Mathieu, Monte Carlo simulation of the electron beam scattering under water vapor environment at low energy. Vacuum 87, 11–15 (2013). doi:10.1016/j.vacuum.2012.06.006

    Article  Google Scholar 

  • M. Sidorov (2003). http://www.maxsidorov.com/ctfexplorer/

  • A.G. Nasibulin, L. Sun, S. Hämäläinen, S.D. Shandakov, F. Banhart, E.I. Kauppinen, In situ TEM observation of MgO nanorod growth. Crystal Growth Des. 10(1), 414–417 (2010). doi:10.1021/cg9010168

    Article  Google Scholar 

  • L.-M. Peng, S.L. Dudarev, M.J. Wheelan, High-Energy Electron Diffraction and Microscopy (Oxford University Press, Oxford, 2004)

    Google Scholar 

  • F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95(14), 146104 (2005). doi:10.1103/PhysRevLett.95.146104

    Article  Google Scholar 

  • S. Janbroers, P.A. Crozier, H.W. Zandbergen, P.J. Kooyman, A model study on the carburization process of iron-based Fischer–Tropsch catalysts using in situ TEM–EELS. Appl. Catal. B. 102(3–4):521-527(2011). doi:http://dx.doi.org/10.1016/j.apcatb.2010.12.034

    Google Scholar 

  • R. Sharma, Kinetic measurements from in situ TEM observations. Microsc. Res. Tech. 72(3), 144–152 (2009). doi:10.1002/jemt.20667

    Article  Google Scholar 

  • S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132(23), 7968–7975 (2010). doi:10.1021/Ja910094r

    Article  Google Scholar 

  • B.W. Smith, D.E. Luzzi, Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90(7), 3509–3515 (2001). doi:10.1063/1.1383020

    Article  Google Scholar 

  • D.S. Su, M. Wieske, E. Beckmann, A. Blume, G. Mestl, R. Schlögl, Electron beam induced reduction of V2O5 studied by analytical electron microscopy. Catal. Lett. 75(Part 1/2), 81–86 (2001)

    Article  Google Scholar 

  • M. Suzuki, T. Yaguchi, X.F. Zhang, High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy 62(4), 437–450 (2013). doi:10.1093/jmicro/dft001

    Article  Google Scholar 

  • W.F. van Dorp, I. Lazic, A. Beyer, A. Gölzhäuser, J.B. Wagner, T.W. Hansen, C.W. Hagen, W.F. van Dorp, I. Lazic, A. Beyer, A. Gölzhäuser, J.B. Wagner, T.W. Hansen, C.W. Hagen, Ultrahigh resolution focused electron beam induced processing: the effect of substrate thickness. Nanotechnology 22(11), 115303 (2011). doi:10.1088/0957-4484/22/11/115303

    Article  Google Scholar 

  • S.B. Vendelbo, P.J. Kooyman, J.F. Creemer, B. Morana, L. Mele, P. Dona, B.J. Nelissen, S. Helveg, Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 72–79 (2013). doi:10.1016/j.ultramic.2013.04.004

    Article  Google Scholar 

  • S.B. Vendelbo, C.F. Elkjaer, H. Falsig, I. Puspitasari, P. Dona, L. Mele, B. Morana, B.J. Nelissen, R. van Rijn, J.F. Creemer, P.J. Kooyman, S. Helveg, Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13(9), 884–890 (2014). doi:10.1038/NMAT4033

    Article  Google Scholar 

  • J.B. Wagner, F. Cavalca, C.D. Damsgaard, L.D.L. Duchstein, T.W. Hansen, Exploring the environmental transmission electron microscope. Micron 43(11), 1169–1175 (2012). doi:10.1016/j.micron.2012.02.008

    Article  Google Scholar 

  • D. Wang, D.S. Su, R. Schlögl, Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO. Z. Anorg. Allg. Chem 630(7), 1007–1014 (2004). doi:10.1002/zaac.200400052

    Article  Google Scholar 

  • T. Yaguchi, M. Suzuki, A. Watabe, Y. Nagakubo, K. Ueda, T. Kamino, Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. (Tokyo) 60(3), 217–225 (2011). doi:10.1093/jmicro/dfr011

    Article  Google Scholar 

  • G.W. Zhou, L. Wang, R. Birtcher, P. Baldo, J. Pearson, J. Yang, J. Eastman, Cu2O island shape transition during Cu-Au alloy oxidation. Phys. Rev. Lett. 96(22), 226108 (2006). doi:10.1103/PhysRevLett.96.226108

    Article  Google Scholar 

  • G. Zhou, L. Luo, L. Li, J. Ciston, E.A. Stach, J.C. Yang, Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 109(23), 235502 (2012). doi:10.1103/PhysRevLett.109.235502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob B. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wagner, J.B., Beleggia, M. (2016). Gas–Electron Interaction in the ETEM. In: Hansen, T., Wagner, J. (eds) Controlled Atmosphere Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-22988-1_3

Download citation

Publish with us

Policies and ethics