Skip to main content

Pharmacogenetic Predictors of Response

  • Chapter
  • First Online:
Novel Biomarkers in the Continuum of Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((BCRF,volume 882))

Abstract

Pharmacogenetics attempts to predict treatment response using a patient’s “germline” genome as the biomarker of interest. This chapter on pharmacogenetic predictors of breast cancer response is divided into four sections. The first introduces readers to genetic variation and describes how variation in the germline genome can affect biology or pharmacology. The second section introduces the translational pathway for pharmacogenetic research and discusses the specific challenges to identifying pharmacogenetic predictors of breast cancer response. The third section is divided into three subsections, each of which discusses a distinct category of pharmacogenetic response predictors; pharmacokinetics, cancer cell sensitivity, and effector cell activation. Within each subsection a specific pharmacogenetic association is described in detail; CYP2D6-tamoxifen, BRCA-PARP inhibitors, and FCGRA-trastuzumab, respectively, followed by a general discussion of other less well-established examples or areas for further research. The chapter concludes with a summary of the current status of pharmacogenetic predictors of breast cancer response and a few predictions for the future of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evert B, Griese EU, Eichelbaum M (1994) Cloning and sequencing of a new non-functional CYP2D6 allele: deletion of T1795 in exon 3 generates a premature stop codon. Pharmacogenetics 4(5):271–274

    Article  CAS  PubMed  Google Scholar 

  2. Kimchi-Sarfaty C, Oh JM, Kim I, Sauna ZE, Calcagno AM, Ambudkar SV et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525–528

    Article  CAS  PubMed  Google Scholar 

  3. French D, Wilkinson MR, Yang W, de Chaisemartin L, Cook EH, Das S et al (2005) Global gene expression as a function of germline genetic variation. Hum Mol Genet 14(12):1621–1629

    Article  CAS  PubMed  Google Scholar 

  4. Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner EO, Nicolae DL et al (2010) SCAN: SNP and copy number annotation. Bioinformatics 26(2):259–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585

    Article  CAS  Google Scholar 

  6. ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  CAS  Google Scholar 

  7. McLeod HL (2013) Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339(6127):1563–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  10. Chmielecki J, Meyerson M (2014) DNA sequencing of cancer: what have we learned? Annu Rev Med 65(1):63–79

    Article  CAS  PubMed  Google Scholar 

  11. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  12. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  13. International HapMap Consortium (2003) The international HapMap project. Nature 426(6968):789–796

    Article  CAS  Google Scholar 

  14. Deloukas P, Bentley D (2004) The HapMap project and its application to genetic studies of drug response. Pharmacogenomics J 4(2):88–90

    Article  CAS  PubMed  Google Scholar 

  15. McLeod HL, Evans WE (2001) Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol 41:101–121

    Article  CAS  PubMed  Google Scholar 

  16. Hertz DL, McLeod HL (2013) Use of pharmacogenetics for predicting cancer prognosis and treatment exposure, response and toxicity. J Hum Genet 58(6):346–352

    Article  CAS  PubMed  Google Scholar 

  17. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2(8):e124

    Article  PubMed  PubMed Central  Google Scholar 

  18. Berry D (2012) Multiplicities in cancer research: ubiquitous and necessary evils. J Natl Cancer Inst 104(15):1125–1133

    Article  PubMed Central  Google Scholar 

  19. Ioannidis JP, Tarone R, McLaughlin JK (2011) The false-positive to false-negative ratio in epidemiologic studies. Epidemiology 22(4):450–456

    Article  PubMed  Google Scholar 

  20. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teutsch SM, Bradley LA, Palomaki GE, Haddow JE, Piper M, Calonge N et al (2009) The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med 11(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altman RB (2011) Pharmacogenomics: “Noninferiority” is sufficient for initial implementation. Clin Pharmacol Ther 89(3):348–350

    Article  CAS  PubMed  Google Scholar 

  23. Relling MV, Altman RB, Goetz MP, Evans WE (2010) Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol 11(6):507–509

    Article  PubMed  PubMed Central  Google Scholar 

  24. Relling MV, Klein TE (2011) CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 89(3):464–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3(111):111–121

    Article  CAS  Google Scholar 

  26. Gillis NK, Patel JN, Innocenti F (2014) Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin Pharmacol Ther 95(3):269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF et al (2013) A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 369(24):2283–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Institute of Medicine (2012) Evolution of translational omics: lessons learned and the path forward. The National Academies Press, Washington, DC

    Google Scholar 

  29. Albain KS, Paik S, van’t Veer L (2009) Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast 18(Suppl 3):S141–S145

    Article  PubMed  Google Scholar 

  30. Kiyotani K, Mushiroda T, Hosono N, Tsunoda T, Kubo M, Aki F et al (2010) Lessons for pharmacogenomics studies: association study between CYP2D6 genotype and tamoxifen response. Pharmacogenet Genomics 20(9):565–568

    Article  CAS  PubMed  Google Scholar 

  31. Begg EJ, Helsby NA, Jensen BP (2012) Pharmacogenetics of drug-metabolizing enzymes: the prodrug hypothesis. Pharmacogenomics 13(1):83–89

    Article  CAS  PubMed  Google Scholar 

  32. Cronin-Fenton DP, Damkier P, Lash TL (2014) Metabolism and transport of tamoxifen in relation to its effectiveness: new perspectives on an ongoing controversy. Future Oncol 10(1):107–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618

    Article  CAS  PubMed  Google Scholar 

  34. Murdter TE, Schroth W, Bacchus-Gerybadze L, Winter S, Heinkele G, Simon W et al (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89(5):708–717

    Article  CAS  PubMed  Google Scholar 

  35. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310(3):1062–1075

    Article  CAS  PubMed  Google Scholar 

  36. Home page of the human cytochrome P450 (CYP) allele nomenclature database [Internet].; 2008 [updated 9/4/2008]. http://www.cypalleles.ki.se

  37. Hicks JK, Swen JJ, Gaedigk A (2014) Challenges in CYP2D6 phenotype assignment from genotype data: a critical assessment and call for standardization. Curr Drug Metab 15(2):218–232

    Article  CAS  PubMed  Google Scholar 

  38. Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT et al (2012) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91(2):321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stearns V, Johnson MD, Rae JM, Morocho A, Novielli A, Bhargava P et al (2003) Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95(23):1758–1764

    Article  CAS  PubMed  Google Scholar 

  40. Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80(1):61–74

    Article  CAS  PubMed  Google Scholar 

  41. Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saladores P, Murdter T, Eccles D, Chowbay B, Zgheib NK, Winter S et al (2014) Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J 08:05

    Google Scholar 

  43. Love RR, Desta Z, Flockhart D, Skaar T, Ogburn ET, Ramamoorthy A et al (2013) CYP2D6 genotypes, endoxifen levels, and disease recurrence in 224 filipino and vietnamese women receiving adjuvant tamoxifen for operable breast cancer. Springerplus 2(1):52. doi:10.1186/2193-1801-2-52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hertz DL, McLeod HL, Irvin WJ (2012) Tamoxifen and CYP2D6: a contradiction of data. Oncologist 17(5):620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R et al (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 104(6):441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP et al (2012) CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 104(6):452–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goetz MP, Suman VJ, Hoskin TL, Gnant M, Filipits M, Safgren SL et al (2013) CYP2D6 metabolism and patient outcome in the austrian breast and colorectal cancer study group trial (ABCSG) 8. Clin Cancer Res 19(2):500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura Y, Ratain MJ, Cox NJ, McLeod HL, Kroetz DL, Flockhart DA (2012) Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Natl Cancer Inst 104(16):1264. (Author reply 1266–1268)

    Article  CAS  PubMed  Google Scholar 

  49. Rae JM, Regan MM, Thibert JN, Gersch C, Thomas D, Leyland-Jones B et al (2013) Concordance between CYP2D6 genotypes obtained from tumor-derived and germline DNA. J Natl Cancer Inst 105(17):1332–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goetz MP, Sun JX, Suman VJ, Silva GO, Perou CM, Nakamura Y et al (2014) Loss of heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J Natl Cancer Inst 107(2). doi:10.1093/jnci/dju401

    Google Scholar 

  51. Irvin WJ, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC et al (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hertz DL, Snavely AC, Evans JP, Ibrahim JG, Anderson SM, Friedman KJ et al (2011) Does increasing the daily tamoxifen dose in patients with diminished CYP2D6 activity increase toxicity? J Clin Oncol 32:5s. (suppl; abstr 561)

    Google Scholar 

  53. Burstein HJ, Prestrud AA, Seidenfeld J, Anderson H, Buchholz TA, Davidson NE et al (2010) American society of clinical oncology clinical practice guideline: update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Clin Oncol 28(23):3784–3796

    Article  PubMed  Google Scholar 

  54. Gnant M, Harbeck N, Thomssen C (2011) St. gallen 2011: summary of the consensus discussion. Breast Care 6:136–141

    Article  PubMed  PubMed Central  Google Scholar 

  55. (1998) Polychemotherapy for early breast cancer: an overview of the randomised trials. Early breast cancer trialists’ collaborative group. Lancet 352(9132):930–942

    Google Scholar 

  56. van de Steeg E, van der Kruijssen CMM, Wagenaar E, Burggraaff JEC, Mesman E, Kenworthy KE et al (2009) Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 37(2):277–281

    Article  PubMed  CAS  Google Scholar 

  57. van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH (2013) Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res 19(4):821–832

    Article  PubMed  CAS  Google Scholar 

  58. The SEARCH Collaborative Group (2008) SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 359(8):789–799

    Article  Google Scholar 

  59. Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL, Voora D et al (2012) The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92(1):112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dudenkov TM, Ingle JN, Buzdar A, Robson ME, Kubo M, Batzler A et al (2014). Genes associated with serum estrone, estrone conjugates, and androstenedione concentrations in postmenopausal women with estrogen receptor-positive breast cancer. J Clin Oncol 32(15 suppl):593. (ASCO Meeting Abstracts)

    Google Scholar 

  61. Csordas K, Lautner-Csorba O, Semsei AF, Harnos A, Hegyi M, Erdelyi DJ et al (2014) Associations of novel genetic variations in the folate-related and ARID5B genes with the pharmacokinetics and toxicity of high-dose methotrexate in paediatric acute lymphoblastic leukaemia. Br J Haematol 166(3):410–420

    Article  CAS  PubMed  Google Scholar 

  62. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Möricke A et al (2013) Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 121(26):5145–5153

    Article  CAS  PubMed  Google Scholar 

  63. Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P et al (2012) Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res 22(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Treviño LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D et al (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27(35):5972–5978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Pinan MA, Garcia-Miguel P, Navajas A et al (2011) Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 57(4):612–619

    Article  PubMed  Google Scholar 

  66. Zhang HN, He XL, Wang C, Wang Y, Chen YJ, Li JX et al (2014) Impact of SLCO1B1 521T> C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer 61(12):2203–2207

    Article  CAS  PubMed  Google Scholar 

  67. Goricar K, Kovac V, Jazbec J, Zakotnik B, Lamovec J, Dolzan V (2014) Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma. Pharmacogenet Genomics 24(10):514–521

    CAS  PubMed  Google Scholar 

  68. Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB et al (2013) Clinical pharmacogenetics implementation consortium (CPIC) guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther 94(6):640–645. (In Review, Submitted April 29, 2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA et al (2000) Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 6(12):4705–4712

    PubMed  Google Scholar 

  70. Boisdron-Celle M, Remaud G, Traore S, Poirier AL, Gamelin L, Morel A et al (2007) 5-fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett 249(2):271–282

    Article  CAS  PubMed  Google Scholar 

  71. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S et al (2006) Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 5(11):2895–2904

    Article  CAS  PubMed  Google Scholar 

  72. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z et al (2013) Potential of dihydropyrimidine dehydrogenase genotypes in personalizing 5-fluorouracil therapy among colorectal cancer patients. Ther Drug Monit 35(5):624–630

    CAS  PubMed  Google Scholar 

  73. Magnani E, Farnetti E, Nicoli D, Casali B, Savoldi L, Focaccetti C et al (2013) Fluoropyrimidine toxicity in patients with dihydropyrimidine dehydrogenase splice site variant: the need for further revision of dose and schedule. Intern Emerg Med 8(5):417–423

    Article  PubMed  Google Scholar 

  74. Yoo BK, Gredler R, Vozhilla N, Su ZZ, Chen D, Forcier T et al (2009) Identification of genes conferring resistance to 5-fluorouracil. Proc Natl Acad Sci U S A 106(31):12938–12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noguchi T, Tanimoto K, Shimokuni T, Ukon K, Tsujimoto H, Fukushima M et al (2004) Aberrant methylation of DPYD promoter, DPYD expression, and cellular sensitivity to 5-fluorouracil in cancer cells. Clin Cancer Res 10(20):7100–7107

    Article  CAS  PubMed  Google Scholar 

  76. Zhu HJ, Wang X, Gawronski BE, Brinda BJ, Angiolillo DJ, Markowitz JS (2013) Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther 344(3):665–672

    Article  CAS  PubMed  Google Scholar 

  77. Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR et al (2004) Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics 84(4):661–668

    Article  CAS  PubMed  Google Scholar 

  78. Ribelles N, Lopez-Siles J, Sanchez A, Gonzalez E, Sanchez MJ, Carabantes F et al (2008) A carboxylesterase 2 gene polymorphism as predictor of capecitabine on response and time to progression. Curr Drug Metab 9(4):336–343

    Article  CAS  PubMed  Google Scholar 

  79. Jamieson D, Lee J, Cresti N, Jackson R, Griffin M, Sludden J et al (2014) Pharmacogenetics of adjuvant breast cancer treatment with cyclophosphamide, epirubicin and 5-fluorouracil. Cancer Chemother Pharmacol 74(4):667–674

    Article  CAS  PubMed  Google Scholar 

  80. Bahadur N, Leathart JBS, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R et al (2002) CYP2C8 polymorphisms in caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64(11):1579–1589

    Article  CAS  PubMed  Google Scholar 

  81. Bergmann TK, Brasch-Andersen C, Green H, Mirza M, Pedersen RS, Nielsen F et al (2011) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 11(2):113–120

    Article  CAS  PubMed  Google Scholar 

  82. de Graan AJ, Elens L, Smid M, Martens JW, Sparreboom A, Nieuweboer AJ et al (2013) A pharmacogenetic predictive model for paclitaxel clearance based on the DMET platform. Clin Cancer Res 19(18):5210–5217

    Article  PubMed  CAS  Google Scholar 

  83. Desta Z, Kreutz Y, Nguyen AT, Li L, Skaar T, Kamdem LK et al (2011) Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with CYP2A6 genetic variants, body mass index, and age. Clin Pharmacol Ther 90(5):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ingle JN, Buzdar AU, Schaid DJ, Goetz MP, Batzler A, Robson ME et al (2010) Variation in anastrozole metabolism and pharmacodynamics in women with early breast cancer. Cancer Res 70(8):3278–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Brabander M, Geuens G, Nuydens R, Willebrords R, De Mey J (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A 78(9):5608–5612

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6(229):229ra43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hall JM, Friedman L, Guenther C, Lee MK, Weber JL, Black DM et al (1992) Closing in on a breast cancer gene on chromosome 17q. Am J Hum Genet 50(6):1235–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bolton KL, Chenevix-Trench G, Goh C, Sadetzki S, Ramus SJ, Karlan BY et al (2012) Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307(4):382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patel AG, Sarkaria JN, Kaufmann SH (2011) Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A 108(8):3406–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  91. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376(9737):235–244

    Article  CAS  PubMed  Google Scholar 

  92. OʼShaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M et al (2014) Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32(34):3840–3847

    Article  PubMed  CAS  Google Scholar 

  93. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH (2012) Failure of iniparib to inhibit poly(ADP-ribose) polymerase in vitro. Clin Cancer Res 18(6):1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cass I, Baldwin RL, Varkey T, Moslehi R, Narod SA, Karlan BY (2003) Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97(9):2187–2195

    Article  CAS  PubMed  Google Scholar 

  95. Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30(21):2654–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA et al (2014) Phase I/ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst 106(6):dju089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yang Y, Xian L (2014) The association between the ERCC1/2 polymorphisms and the clinical outcomes of the platinum-based chemotherapy in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis. Tumour Biol 35(4):2905–2921

    Article  CAS  PubMed  Google Scholar 

  98. Wang Z, Chen JQ, Liu JL, Qin XG, Huang Y (2012) Polymorphisms in ERCC1, GSTs, TS and MTHFR predict clinical outcomes of gastric cancer patients treated with platinum/5-fu-based chemotherapy: a systematic review. BMC Gastroenterol 12:137. doi:10.1186/1471-230X-12-137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz HJ, Kim HJ et al (2011) ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res 17(6):1632–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leskela S, Leandro-Garcia LJ, Mendiola M, Barriuso J, Inglada-Perez L, Munoz I et al (2010) The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18(1):85–95

    Article  PubMed  CAS  Google Scholar 

  101. Findlay JM, Middleton MR, Tomlinson I (2014) A systematic review and meta-analysis of somatic and germline DNA sequence biomarkers of esophageal cancer survival, therapy response and stage. Ann Oncol 26(4):624–644

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ojha RP, Gurney JG (2014) Methylenetetrahydrofolate reductase C677T and overall survival in pediatric acute lymphoblastic leukemia: a systematic review. Leuk Lymphoma 55(1):67–73

    Article  CAS  PubMed  Google Scholar 

  103. Jamieson D, Cresti N, Bray J, Sludden J, Griffin MJ, Hawsawi NM et al (2011) Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy. Pharmacogenet Genomics 21(12):808–819

    Article  CAS  PubMed  Google Scholar 

  104. Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjakoski K et al (2008) NAD(P)H:Quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40(7):844–853

    Article  CAS  PubMed  Google Scholar 

  105. Mallal S, Nolan D, Witt C, Masel G, Martin A, Moore C et al (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727–732

    Article  CAS  PubMed  Google Scholar 

  106. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M et al (2011) HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in europeans. N Engl J Med 364(12):1134–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pavlos R, Mallal S, Phillips E (2012) HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics 13(11):1285–1306

    Article  CAS  PubMed  Google Scholar 

  108. Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS et al (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29(6):667–673

    Article  CAS  PubMed  Google Scholar 

  109. Schaid DJ, Spraggs CF, McDonnell SK, Parham LR, Cox CJ, Ejlertsen B et al (2014) Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 32(22):2296–2303

    Article  CAS  PubMed  Google Scholar 

  110. Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV et al (2010) ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464(7287):405–408

    Article  CAS  PubMed  Google Scholar 

  111. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N et al (2009) Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 41(10):1105–1109

    Article  CAS  PubMed  Google Scholar 

  112. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  113. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312

    Article  CAS  PubMed  Google Scholar 

  114. Giordano SH, Temin S, Kirshner JJ, Chandarlapaty S, Crews JR, Davidson NE et al (2014) Systemic therapy for patients with advanced human epidermal growth factor receptor 2-positive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 32(19):2078–2099

    Article  CAS  PubMed  Google Scholar 

  115. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C et al (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94(2):259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-angstrom crystal structure of the human IgG1 fc fragment-FcgammaRIII complex. Nature 406(6793):267

    Article  CAS  PubMed  Google Scholar 

  117. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446

    Article  CAS  PubMed  Google Scholar 

  118. Warmerdam P, van de Winkel J, Vlug A, Westerdaal N, Capel P (1991) A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 147(4):1338–1343

    CAS  PubMed  Google Scholar 

  119. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne A, de Haas M (1997) FcgammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 90(3):1109–1114

    CAS  PubMed  Google Scholar 

  120. Norris CF, Pricop L, Millard SS, Taylor SM, Surrey S, Schwartz E et al (1998) A naturally occurring mutation in Fc gamma RIIA: a Q to K127 change confers unique IgG binding properties to the R131 allelic form of the receptor. Blood 91(2):656–662

    CAS  PubMed  Google Scholar 

  121. Kim DH, Jung HD, Kim JG, Lee J, Yang D, Park YH et al (2006) FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 108(8):2720–2725

    Article  CAS  PubMed  Google Scholar 

  122. Wang J, Sonnerborg A, Rane A, Josephson F, Lundgren S, Stahle L et al (2006) Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug Efavirenz. Pharmacogenet Genomics 16(3):191–198

    PubMed  Google Scholar 

  123. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor Fc gammaRIIIa gene. Blood 99(3):754–758

    Article  CAS  PubMed  Google Scholar 

  124. Ghesquieres H, Cartron G, Seymour JF, Delfau-Larue MH, Offner F, Soubeyran P et al (2012) Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood 120(13):2650–2657

    Article  CAS  PubMed  Google Scholar 

  125. Dornan D, Spleiss O, Yeh RF, Duchateau-Nguyen G, Dufour A, Zhi J et al (2010) Effect of FCGR2A and FCGR3A variants on CLL outcome. Blood 116(20):4212–4222

    Article  CAS  PubMed  Google Scholar 

  126. Roca L, Dieras V, Roche H, Lappartient E, Kerbrat P, Cany L et al (2013) Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial. Breast Cancer Res Treat 139(3):789–800

    Article  CAS  PubMed  Google Scholar 

  127. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G et al (2007) Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res 67(24):11991–11999

    Article  CAS  PubMed  Google Scholar 

  128. Tamura K, Shimizu C, Hojo T, Akashi-Tanaka S, Kinoshita T, Yonemori K et al (2011) FcgammaR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 22(6):1302–1307

    Article  CAS  PubMed  Google Scholar 

  129. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    Article  CAS  PubMed  Google Scholar 

  130. Hurvitz SA, Betting DJ, Stern HM, Quinaux E, Stinson J, Seshagiri S et al (2012) Analysis of Fc gamma receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res 18(12):3478–3486

    Article  CAS  PubMed  Google Scholar 

  131. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  Google Scholar 

  132. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L et al (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20(10):2773–2782

    Article  CAS  PubMed  Google Scholar 

  133. Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 31(6):586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Queirolo P, Morabito A, Laurent S, Lastraioli S, Piccioli P, Ascierto PA et al (2013) Association of CTLA-4 polymorphisms with improved overall survival in melanoma patients treated with CTLA-4 blockade: a pilot study. Cancer Invest 31(5):336–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Rae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Breast Cancer Research Foundation

About this chapter

Cite this chapter

Hertz, D., Rae, J. (2016). Pharmacogenetic Predictors of Response. In: Stearns, V. (eds) Novel Biomarkers in the Continuum of Breast Cancer. Advances in Experimental Medicine and Biology(), vol 882. Springer, Cham. https://doi.org/10.1007/978-3-319-22909-6_8

Download citation

Publish with us

Policies and ethics