Skip to main content

EBV Infection of Mice with Reconstituted Human Immune System Components

  • Chapter
  • First Online:
Epstein Barr Virus Volume 2

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 391))

Abstract

Epstein-Barr virus (EBV) was discovered 50 years ago as the first candidate human tumor virus. Since then, we have realized that this human γ-herpesvirus establishes persistent infection in the majority of adult humans, but fortunately causes EBV-associated diseases only in few individuals. This is an incredible success story of the human immune system, which controls EBV infection and its transforming capacity for decades. A better understanding of this immune control would not only benefit patients with EBV-associated malignancies, but could also provide clues how to establish such a potent, mostly cell-mediated immune control against other pathogens and tumors. However, the functional relevance of EBV-specific immune responses can only be addressed in vivo, and mice with reconstituted human immune system components (huMice) constitute a small animal model to interrogate the protective value of immune compartments during EBV infection, but also might provide a platform to test EBV-specific vaccines. This chapter will summarize the insights into EBV immunobiology that have already been gained in these models and provide an outlook into promising future avenues to develop this in vivo model of EBV infection and human immune responses further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLT:

Bone marrow, liver, thymus

CD:

Cluster of differentiation

DNAM:

DNAX accessory molecule

DLBCL:

Diffuse large B cell lymphoma

EBNA:

Epstein-Barr nuclear antigen

EBV:

Epstein-Barr virus

HLA:

Human leukocyte antigen

HLH:

Hemophagocytic lymphohistiocytosis

HPC:

Hematopoietic progenitor cell

HuMice:

Mice with reconstituted human immune system components

IFN:

Interferon

Ig:

Immunoglobulin

IL:

Interleukin

IM:

Infectious mononucleosis

LMP:

Latent membrane protein

MHC:

Major histocompatibility complex

NK:

Natural killer

NKG2D:

Natural killer group 2, member D

NOD:

Non-obese diabetic

NPC:

Nasopharyngeal carcinoma

PAMP:

Pathogen-associated molecular pattern

PBMC:

Peripheral blood mononuclear cell

DC:

Dendritic cell

Rag:

Recombinase-activating gene

SCID:

Severe combined immunodeficiency

SIRP:

Signal regulatory protein

TCR:

T cell receptor

TLR:

Toll-like receptor

References

  • Antsiferova O, Müller A, Rämer P, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH et al (2014) Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 10(8):e1004333

    Google Scholar 

  • Ariza ME, Glaser R, Kaumaya PT, Jones C, Williams MV (2009) The EBV-encoded dUTPase activates NF-kappa B through the TLR2 and MyD88-dependent signaling pathway. J Immunol 182:851–859

    Article  CAS  PubMed  Google Scholar 

  • Babcock JG, Hochberg D, Thorley-Lawson AD (2000) The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506

    Article  CAS  PubMed  Google Scholar 

  • Bhaduri-McIntosh S, Rotenberg MJ, Gardner B, Robert M, Miller G (2008) Repertoire and frequency of immune cells reactive to Epstein-Barr virus-derived autologous lymphoblastoid cell lines. Blood 111:1334–1343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bickham K, Goodman K, Paludan C, Nikiforow S, Tsang ML, Steinman RM, Münz C (2003) Dendritic cells initiate immune control of Epstein-Barr virus transformation of B lymphocytes in vitro. J Exp Med 198:1653–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, Koo GC, Rice CM, Ploss A (2013) Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol 191:1753–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet JP, Haddad EK, Breton G, Trumpfheller C, Pollak S, Shimeliovich I et al (2011) Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med 208:2357–2366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cesarman E (2014) Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol 9:349–372

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee B, Leung CS, Münz C (2014) Animal models of Epstein Barr virus infection. J Immunol Methods 410:80–87

    Article  CAS  PubMed  Google Scholar 

  • Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, Marcenaro E, Leung CS, Antsiferova O, Landtwing V et al (2013) Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep 5:1489–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung BK, Tsai K, Allan LL, Zheng DJ, Nie JC, Biggs CM, Hasan MR, Kozak FK, van den Elzen P, Priatel JJ, Tan R (2013) Innate immune control of EBV-infected B cells by invariant natural killer T cells. Blood 122:2600–2608

    Article  CAS  PubMed  Google Scholar 

  • Cocco M, Bellan C, Tussiwand R, Corti D, Traggiai E, Lazzi S, Mannucci S, Bronz L, Palummo N, Ginanneschi C et al (2008) CD34+ cord blood cell-transplanted Rag2−/− gamma c−/− mice as a model for Epstein-Barr virus infection. Am J Pathol 173:1369–1378

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Wilkinson A, Idris A, Fancke B, O’Keeffe M, Khalil D, Ju X, Lahoud MH, Caminschi I, Shortman K et al (2014) FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol 192:1982–1989

    Article  CAS  PubMed  Google Scholar 

  • Duraiswamy J, Bharadwaj M, Tellam J, Connolly G, Cooper L, Moss D, Thomson S, Yotnda P, Khanna R (2004) Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res 64:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Epstein MA, Achong BG, Barr YM (1964a) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  • Epstein MA, Henle G, Achong BG, Barr YM (1964b) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J Exp Med 121:761–770

    Article  Google Scholar 

  • Fiola S, Gosselin D, Takada K, Gosselin J (2010) TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol 185:3620–3631

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault E, Fiola S, Olivier M, Gosselin J (2007) Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol 81:8016–8024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurer C, Strowig T, Brilot F, Pack M, Trumpfheller C, Arrey F, Park CG, Steinman RM, Münz C (2008) Targeting the nuclear antigen 1 of Epstein Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood 112:1231–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heuts F, Rottenberg ME, Salamon D, Rasul E, Adori M, Klein G, Klein E, Nagy N (2014) T cells modulate Epstein-Barr virus latency phenotypes during infection of humanized mice. J Virol 88:3235–3245

    Article  PubMed Central  PubMed  Google Scholar 

  • Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M, Zhang JS, Madsen M, Rosdahl N, Konradsen HB, Storm HH, Melbye M (2003) Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med 349:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC (2005) Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79:13993–14003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hui EP, Taylor GS, Jia H, Ma BB, Chan SL, Ho R, Wong WL, Wilson S, Johnson BF, Edwards C et al (2013) Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res 73:1676–1688

    Article  CAS  PubMed  Google Scholar 

  • Hutt-Fletcher LM (2007) Epstein-Barr virus entry. J Virol 81:7825–7832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, Greil J, Albert MH, Schwinger W, Nathrath M et al (2013) Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 31:39–48

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Islas-Ohlmayer M, Padgett-Thomas A, Domiati-Saad R, Melkus MW, Cravens PD, Martin Mdel P, Netto G, Garcia JV (2004) Experimental infection of NOD/SCID mice reconstituted with human CD34+ cells with Epstein-Barr virus. J Virol 78:13891–13900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K (2009) Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 206:2091–2099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuwana Y, Takei M, Yajima M, Imadome K, Inomata H, Shiozaki M, Ikumi N, Nozaki T, Shiraiwa H, Kitamura N et al (2011) Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS ONE 6:e26630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laichalk LL, Thorley-Lawson DA (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79:1296–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, Scott D, Peterson KE, Chan CK, Dittmer U et al (2013) BLT-humanized C57BL/6 Rag2−/−gamma c−/−CD47−/− mice are resistant to GVHD and develop B- and T-cell immunity to HIV infection. Blood 122:4013–4020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lear AL, Rowe M, Kurilla MG, Lee S, Henderson S, Kieff E, Rickinson AB (1992) The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle. J Virol 66:7461–7468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leen A, Meij P, Redchenko I, Middeldorp J, Bloemena E, Rickinson A, Blake N (2001) Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4+ T-helper 1 responses. J Virol 75:8649–8659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H, de Geus SJ, Pouw SM, Bohne M, Voordouw A et al (2011) Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 108:13224–13229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leung CS, Maurer MA, Meixlsperger S, Lippmann A, Cheong C, Zuo J, Haigh TA, Taylor GS, Münz C (2013) Robust T-cell stimulation by Epstein-Barr virus-transformed B cells after antigen targeting to DEC-205. Blood 121:1584–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim WH, Kireta S, Russ GR, Coates PT (2006) Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood 109:1043–1050

    Article  PubMed  Google Scholar 

  • Lotz M, Tsoukas CD, Fong S, Carson DA, Vaughan JH (1985) Regulation of Epstein-Barr virus infection by recombinant interferons. Selected sensitivity to interferon-gamma. Eur J Immunol 15:520–525

    Article  CAS  PubMed  Google Scholar 

  • Luzuriaga K, Sullivan JL (2010) Infectious mononucleosis. N Engl J Med 362:1993–2000

    Article  CAS  PubMed  Google Scholar 

  • Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML et al (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85:165–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marodon G, Desjardins D, Mercey L, Baillou C, Parent P, Manuel M, Caux C, Bellier B, Pasqual N, Klatzmann D (2009) High diversity of the immune repertoire in humanized NOD.SCID.gamma c−/− mice. Eur J Immunol 39:2136–2145

    Article  CAS  PubMed  Google Scholar 

  • McGeoch DJ (2001) Molecular evolution of the gamma-Herpesvirinae. Philos Trans R Soc Lond B Biol Sci 356:421–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meixlsperger S, Leung CS, Ramer PC, Pack M, Vanoaica LD, Breton G, Pascolo S, Salazar AM, Dzionek A, Schmitz J et al (2013) CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121:5034–5044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA, Wege AK, Haase AT, Garcia JV (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Lipman M (1973) Comparison of the yield of infectious virus from clones of human and simian lymphoblastoid lines transformed by Epstein-Barr virus. J Exp Med 138:1398–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O’Donnell M, Steinman RM (2000) Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 191:1649–1660

    Article  PubMed Central  PubMed  Google Scholar 

  • Nochi T, Denton PW, Wahl A, Garcia JV (2013) Cryptopatches are essential for the development of human GALT. Cell Rep 3:1874–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pappworth IY, Wang EC, Rowe M (2007) The switch from latent to productive infection in epstein-barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81:474–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramer PC, Chijioke O, Meixlsperger S, Leung CS, Münz C (2011) Mice with human immune system components as in vivo models for infections with human pathogens. Immunol Cell Biol 89:408–416

    Article  PubMed Central  PubMed  Google Scholar 

  • Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rickinson AB, Long HM, Palendira U, Münz C, Hislop A (2014) Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 35:159–169

    Article  CAS  PubMed  Google Scholar 

  • Rivailler P, Cho YG, Wang F (2002) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG (2013) Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 31:635–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouphael NG, Talati NJ, Vaughan C, Cunningham K, Moreira R, Gould C (2007) Infections associated with haemophagocytic syndrome. Lancet Infect Dis 7:814–822

    Article  PubMed  Google Scholar 

  • Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB (1992) Three pathways of Epstein-Barr virus gene activation from EBNA1- positive latency in B lymphocytes. J Virol 66:122–131

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salguero G, Daenthanasanmak A, Münz C, Raykova A, Guzman CA, Riese P, Figueiredo C, Länger F, Schneider A, Macke L et al (2014) Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation. J Immunol 192:4636–4647

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Misawa N, Nie C, Satou Y, Iwakiri D, Matsuoka M, Takahashi R, Kuzushima K, Ito M, Takada K, Koyanagi Y (2011) A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117:5663–5673

    Article  CAS  PubMed  Google Scholar 

  • Serra-Hassoun M, Bourgine M, Boniotto M, Berges J, Langa F, Michel ML, Freitas AA, Garcia S (2014) Human hematopoietic reconstitution and HLA-restricted responses in nonpermissive alymphoid mice. J Immunol 193:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Severa M, Giacomini E, Gafa V, Anastasiadou E, Rizzo F, Corazzari M, Romagnoli A, Trivedi P, Fimia GM, Coccia EM (2013) EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur J Immunol 43:147–158

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H et al (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107:13022–13027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE et al (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  CAS  PubMed  Google Scholar 

  • Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J, Koo G, Rice CM, Young JW, Chadburn A et al (2009) Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206:1423–1434

    Article  PubMed Central  PubMed  Google Scholar 

  • Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W, Eynon EE, Manz MG, Flavell RA (2011) Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma c−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 108:13218–13223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sundstrom Y, Nilsson C, Lilja G, Karre K, Troye-Blomberg M, Berg L (2007) The expression of human natural killer cell receptors in early life. Scand J Immunol 66:335–344

    Article  CAS  PubMed  Google Scholar 

  • Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE, Danska JS (2007) Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 8:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Taylor GS, Haigh TA, Gudgeon NH, Phelps RJ, Lee SP, Steven NM, Rickinson AB (2004) Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 78:768–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thacker EL, Mirzaei F, Ascherio A (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59:499–503

    Article  PubMed  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A, Manz MG (2004) Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304:104–107

    Article  CAS  PubMed  Google Scholar 

  • Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (2012) Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med 271:183–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K, Leung CS, Geletneky K, Sertel S, Münz C, Feederle R, Delecluse HJ (2013) Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep 5:458–470

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Madariaga ML, Wang S, Van Rooijen N, Oldenborg PA, Yang YG (2007) Lack of CD47 on nonhematopoietic cells induces split macrophage tolerance to CD47null cells. Proc Natl Acad Sci USA 104:13744–13749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N et al (2009) The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammacnull (NOG) mice (hu-HSC NOG mice). Int Immunol 21:843–858

    Article  CAS  PubMed  Google Scholar 

  • White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, Savoldo B, Coutinho R, Bodor C, Gribben J et al (2012) EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest 122:1487–1502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Honda M, Yamamoto N, Fujiwara S (2008) A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J Infect Dis 198:673–682

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Imadome K, Nakagawa A, Watanabe S, Terashima K, Nakamura H, Ito M, Shimizu N, Yamamoto N, Fujiwara S (2009) T cell-mediated control of Epstein-Barr virus infection in humanized mice. J Infect Dis 200:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Takenaka K, Urata S et al (2013) Polymorphic SIRPalpha is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 121:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • Yuling H, Ruijing X, Li L, Xiang J, Rui Z, Yujuan W, Lijun Z, Chunxian D, Xinti T, Wei X et al (2009) EBV-induced human CD8+ NKT cells suppress tumorigenesis by EBV-associated malignancies. Cancer Res 69:7935–7944

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by Cancer Research Switzerland (KFS-3234-08-2013), the Association for International Cancer Research (14-1033), KFSPMS and KFSPHLD of the University of Zurich, the Baugarten Foundation, the Sobek Foundation, Fondation Acteria, the Wellcome Trust, the Leukaemia and Lymphoma Research, the Medical Research Council, and the Swiss National Science Foundation (310030_143979 and CRSII3_136241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Münz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Münz, C. (2015). EBV Infection of Mice with Reconstituted Human Immune System Components. In: Münz, C. (eds) Epstein Barr Virus Volume 2. Current Topics in Microbiology and Immunology, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-22834-1_14

Download citation

Publish with us

Policies and ethics