Skip to main content

Bioremediation of Toxic Metals Using Algae

  • Chapter
Algal Biorefinery: An Integrated Approach

Abstract

The rapidly growing population and expanding technological activities have accelerated the rate of addition of numerous poisonous pollutants especially the metal ions to the surrounding environment. These pollutants become deleterious due to their mobilization, transport and deposition in the various aquatic as well as terrestrial ecosystems. The cyanobacteria and algae (commonly called together ‘Algae’) constitute the most ancient groups of autotrophic microorganisms and are invariably affected by the presence of metal ions in the environment (Whitton, Arch Mikrobiol 72:353–360, 1970). Algae are the organisms which can resist the metal toxicity by biochemical, chemical and physical mechanisms resulting in cell surface adsorption, metabolism dependent accumulation and precipitation (Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ (Ed) VCH, Weinheim, pp. 401–434). They instantly interact with metal pollutants differently at cellular level showing different responses and tolerance mechanisms, termed as ‘algae-metal interactions’—which is the basis of phytoremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abernethy, R.H., Thiel, D.S., Peterson, N.S. and Helm, K. (1989). Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol., 89, 569–576.

    Article  CAS  Google Scholar 

  • Agrawal, M. and Kumar, H.D. (1975). Response of Chlorella to mercury pollution. Ind J Ecol., 21, 94–98.

    Google Scholar 

  • Ahuza, P., Gupta, R. and Saxena, R.K. (1999). Zn biosorption by Oscillatoria anguistissima. Process Biochem, 34, 77–85.

    Article  Google Scholar 

  • Alscher, R.G. (1989). Biosynthesis and antioxidant function of glutathione in plants. Physiologia plantarum, 77, 457–464.

    Article  CAS  Google Scholar 

  • Aposhian, H.V. (1997). Enzymatic Methylation of Arsenic Species and Other New Approaches to Arsenic Toxicity. Ann Rev Pharmacol Toxicol, 37, 397–419.

    Article  CAS  Google Scholar 

  • Asada, K. (1992). Ascorbate Peroxidase: A hydrogen peroxide scavenging enzyme in plants. Physiol Plant, 85, 235–241.

    Article  CAS  Google Scholar 

  • Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol, 50, 601–639.

    Article  CAS  Google Scholar 

  • Aziz, M.A. and Ng, W.J. (1993). Industrial wastewater treatment using an activated algae-reactor. Water Sci Technol, 28, 71–76.

    CAS  Google Scholar 

  • Barros, M.P., Granbom, M., Colepicolo, P. and Pedersén, M. (2003). Temporal mismatch between induction of superoxide dismutase and ascorbate peroxidase correlates with high H2O2 concentration in seawater from clofibrate-treated red algae Kappaphycus alvarezii. Arch Biochem Biophys, 420, 161–168.

    Article  CAS  Google Scholar 

  • Bates, S.S., Tessier, A., Campbell, P.G.C. and Buffle, J. (1982). Zinc adsorption and transport by Chlamydomonas variabilis and Scenedesmus subspicatus (Chlorophyceae) grown in semicontinuous culture. J Phycol, 18, 521–529.

    Article  CAS  Google Scholar 

  • Bates, S.S., Tessier, A., Campbell, P.G.C. and Letourneau, M. (1985). Zinc-phosphorus interactions and variation in zinc accumulation during growth of Chlamydomonas variabilis (Chlorophyceae) in batch culture. Can J Fish Aquat Sci, 32, 86–94.

    Article  Google Scholar 

  • Ben-Bassat, D. and Mayer, A.M. (1977). Reduction of mercury chloride by Chlorella: Evidence for a reducing factor. Physiologia Plantarum, 40(3), 157–162.

    Article  CAS  Google Scholar 

  • Bender, J., Gould, J.P., Vatchaapijarn, Y., Young, J.S. and Philips, P. (1994). Removal of zinc and manganese from contaminated water with cyanobacteria mats. Water Environ Res, 66, 679.

    Article  CAS  Google Scholar 

  • Bhattacharya, P. and Pal, R. (2011). Response of algae to arsenic toxicity. J Appl Phycol, 23, 293–299.

    Article  CAS  Google Scholar 

  • Biswas, B.K., Dhar, R.K., Samanta, G., Mandal, B.K., Chakraborti, D., Faruk, I., Islam, K.S., Choudhury, M.M., Islam, A. and Roy, S. (1998). Detailed study report of Samta, one of the arsenic-affected villages of Jessore District. Bangladesh Curr Sci, 74, 134–145.

    Google Scholar 

  • Blum, A. and Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci, 21, 43–47.

    Article  Google Scholar 

  • Bobrowicz, P., Wysocki, R., Owsianik, G., Go!eau, A. and Ulaszewski, S. (1997). Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast, 13, 819–828.

    Google Scholar 

  • Bottino, N.R., Newman, R.D., Cox, E.R., Stockton, R., Hoban, M., Zingaro, R.A. and Irgolic, K.J. (1978). The effects of arsenate and arsenite on the growth and morphology of the marine unicellular algae Tetraselmis chui (Chlorophyta) and Hymenomonas carterae (Chrysophyta). J Exp Mar Biol Ecol, 33(2), 153–168.

    Article  CAS  Google Scholar 

  • Buettner, G.R. and Jurkiewicz, B.A. (1996). Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat Res, 145, 532–541.

    Article  CAS  Google Scholar 

  • Carrilho, E.N. and Gilbert, T.R. (2000). Assessing metal sorption on the marine alga Pilayella littoralis. J Environ Mon, 2, 410–415.

    Article  CAS  Google Scholar 

  • Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmá, J.C. and Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev, 25(3), 335–347.

    Article  CAS  Google Scholar 

  • Cervantes, C., Ji, G., Ramirez, J.L. and Silver, S. (2006). Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev, 15(4), 355–367.

    Article  Google Scholar 

  • Chaisuksant, Y. (2003). Biosorption of Cd (II) and Cu (II) by pretreated biomass of marine alga Gracilaria fisheri. Environ Technol, 24, 1501–1508.

    Article  CAS  Google Scholar 

  • Chakraborti, D. (1999). 29 Dec 1999 message from Dipankar Chakraborti. Arsenic Crisis Information Centre. Retrieved from www.bicn.com/acic. (Last updated 24.09.2002).

  • Chakraborty, N., Banerjee, A., Lahiri, S., Panda, A., Ghosh, A.N. and Pal, R. (2009). Biorecovery of gold using cyanobacteria and eukaryotic alga with special reference to nanogold formation – A novel phenomenon. J Appl Phycol, 21, 145–152.

    Article  CAS  Google Scholar 

  • Chakraborty, N., Banerjee, A. and Pal, R. (2011). Accumulation of lead by free and immobilized cyanobacteria with special reference to accumulation factor and recovery. Biores Tech, 102(5), 4191–4195.

    Article  CAS  Google Scholar 

  • Chakraborty, N., Pal, R., Ramaswami, A., Nayak, D. and Lahiri, S. (2006). Diatom: A potential bio-accumulator of gold. J Radioanal Nucl Chem, 270, 645–649.

    Article  CAS  Google Scholar 

  • Chance, B., Sies, H. and Boveris A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev, 59, 527–605.

    CAS  Google Scholar 

  • Chen, S.L., Yeh, S.J., Yang, M.H. and Lin, T.H. (1995). Trace-element concentration and arsenic speciation in the well water of a Taiwan area with endemic blackfoot disease. Biol Trans Elem Res, 48, 263–274.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A. and Gorecka, H. (2004). Stress metal removal by Spirulina sp. from copper smelter and refinery effluent. Hydrometallurgy, 73, 147–153.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A. and Gorecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

    Article  CAS  Google Scholar 

  • Chong, A.M.Y., Wong, Y.S. and Tam, N.F.Y. (2000). Performance of different microbial species in removing nickel and zinc from industrial wastewater. Chemosphere, 41, 251–257.

    Article  CAS  Google Scholar 

  • Chong, K.H. and Volesky, B. (1996). Metal biosorption equilibria in a ternary system. Biotechnol Bioeng, 49, 629–638.

    Article  CAS  Google Scholar 

  • Chow, T.J. (1968). Isotope analysis of sea-water by mass spectrometry. J Water Pollut Control Fed, 40, 399–411.

    CAS  Google Scholar 

  • Cole, S.P., Sparks, K.E., Fraser, K., Loe, D.W., Grant, C.E., Wilson, G.M. and Deeley, R.G. (1994). Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res, 54(22), 5902–5910.

    CAS  Google Scholar 

  • Constantinescu, A., Han, D. and Packer, L. (1993). Vitamin E recycling in human erythrocyte membranes. J Biol Chem, 268(15), 10906–10913.

    CAS  Google Scholar 

  • Conway, H.L. (1978). Sorption of Arsenic and Cadmium and Their Effects on Growth, Micronutrient Utilization, and Photosynthetic Pigment Composition of Asterionella formosa. J Fisher Res Board Can, 35, 286–294.

    Article  CAS  Google Scholar 

  • Cossich, E.S., Tavares, C.R.G. and Ravagnani, T.M.K. (2002). Biosorption of chromium (III) by Sargassum sp. Biomass Electronic J Biotechnol, 5, 133–140.

    Google Scholar 

  • Cullen, W.R. and Nelson, J.C. (1993). The biotransformation of monomethylarsonate and dimethyl arsenate into arsenobetaine in sea water and mussels. Appl Organomet Chem, 7, 319–327.

    Article  CAS  Google Scholar 

  • Davis, T.A., Ali, F.E.C., Giannitti, E., Volesky, B. and Mucci, A. (2004). Cadmium biosorption by S. fluitans: Treatment, resilience and uptake relative to other Sargassum spp. and brown algae. Water Qual Res J, 39(3), 185–191.

    Google Scholar 

  • Davis, T.A., Llanes, F., Volesky, B., Pulido, G.D., Mccook, A. and Mucci, A. (2003). 1H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption. Appl Biochem Biotechnol, 110, 75–90.

    Article  CAS  Google Scholar 

  • De Carvalho, R.P., Chong, K.H. and Volesky, B. (1995). Evaluation of the Cd, Cu and Zn biosorption in two-metal systems using algal biosorbent. Biotechnol Prog, 11, 39–44.

    Article  Google Scholar 

  • De Filippis, L.F. and Pallaghy, C.K. (1994). Heavy metals: Sources and biological effects. In: Algae and water pollution. Rai, L.C., Gaur, J.P., Soeder, C.J. (Eds), E Schweizerbartsche Verlagsbuchhandlung (Nägele u. Obermiller) Stuttgart. pp. 31–77.

    Google Scholar 

  • De Vos, C.H.R. (1992). Glutathione depletion due to copper induced phytochelatin, synthesis causes oxidative stress in Silene cucubalus. Pant Physiol, 98, 853–858.

    Google Scholar 

  • Dey, S. and Rosen, B.P. (1995). Dual mode of energy coupling by the oxyanion translocating ArsB protein. J Bacteriol, 177, 385–389.

    CAS  Google Scholar 

  • Dhar, R.K., Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G. and Kabir, S. (1997). Groundwater arsenic calamity in Bangladesh. Curr Sci, 73, 48–59.

    CAS  Google Scholar 

  • Donmez, G.C., Aksu, Z., Ozturk, A. and Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem, 34, 885–892.

    Article  CAS  Google Scholar 

  • Edmonds, J.S. and Francesconi, K.A. (1981). Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature, 289, 602–604.

    Article  CAS  Google Scholar 

  • Eisler, R. (1994). A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. In: Arsenic Exposure and Health. Chappel, W.R., Abernathy, C.O. and Cothern, C.R. (Eds), Sci Technol Lett, Northwood. Pp. 185–259.

    Google Scholar 

  • Ele-Sheekh, M.M., El-Shouny, W.A., Osman, M.F.H. and El-Gammal, W.E. (2005). Growth and heavy metals removal affinity of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluent. Environ Toxicol Pharmacol, 19, 357–365.

    Article  CAS  Google Scholar 

  • Esteves, A.J.P., Valdman, E. and Leite, S.G.F. (2000). Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol Lett, 22, 499–502.

    Article  CAS  Google Scholar 

  • Feng, D. and Aldrich, C. (2004). Adsorption of heavy metals by biomaterials derived from marine alga Ecklonia maxima. Hydrometallurgy, 73, 1–10.

    Article  CAS  Google Scholar 

  • Fjerdingstad, E., Kemp, K., Fjerdingstad, E. and Vanggaard, L. (1974). Chemical analyses of red “snow” from East-Greenland with remarks on Chlamydomonas nivalis (Bau.) Wille. Arch Hydrobiol, 73, 70–83.

    Google Scholar 

  • Foster, P.L. (1982). Metal resistance of chlorophyta from rivers polluted by heavy metals. Freshwater Biol, 12, 41–61.

    Article  CAS  Google Scholar 

  • Frankenberger, W.T. Jr. (Ed.) (2001). Environmental Chemistry of Arsenic. Marcel Dekker, New York.

    Google Scholar 

  • Fridovich, I. (1997). Superoxide anion radical, superoxide dismutase and related matters. J Biol Chem, 250, 18515–18517.

    Article  Google Scholar 

  • Gadd, G.M. (1988). Accumulation of metals by microorganisms and algae. In: Biotechnology. Rehm, H.J. (Ed.), VCH, Weinheim. pp. 401–434.

    Google Scholar 

  • Gadd, G.M. (1992). Microbial control of heavy metal pollution. In: Fry, J.C., Gadd, G.M., Herbert, R.A., Jones, C.W. and Watson-Craik, I.A. (Eds). Microbial control of pollution, Cambridge University Press.

    Google Scholar 

  • Gadd, G.M. (1993). Interactions of fungi with toxic metals. New Phytol, 124, 25–60.

    Article  CAS  Google Scholar 

  • Gailer, J., Francesconi, K.A., Edmonds, J.S. and Irgolic, K.J. (1995). Metabolism of arsenic compounds by the blue mussel Mytiilus edulis after accumulation from seawater spiked arsenic compounds. Appl Organanomet Chem, 9, 341–355.

    Article  CAS  Google Scholar 

  • Galperin, M.Y., Walker, D.R. and Koonin, E.V. (1998). Analogous enzymes: Independent inventions in enzyme evolution. Genome Res, 8, 779–790.

    CAS  Google Scholar 

  • Garcia-Salgado, S., Quijano, M.A. and Bonilla, J. (2006). Determination of soluble toxic arsenic species in alga samples by microwave-assisted extraction and high performance liquid chromatography-hydride generation-inductively coupled plasma-atomic emission spectrometry. J Chromatogr A, 1129, 54–60.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J.L., Peralta-Videa, J.R., Rosa, G. and Parsons, J.G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev, 249, 1797–1810.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., Dokken, K. and Yacaman, M.J. (1998). Innovative technology to recover gold (III) from aqueous solutions by using Medicago sativa (alfalfa). In: Proceedings of the 1998 Annual Conference on Hazardous Waste Research. Erickson, L.E. and Rankin, M.M. (Eds), Kansas State Univ, Manhattan, KS. pp. 122–133.

    Google Scholar 

  • Genter, R.B. (1996). Ecotoxicology of inorganic chemical stress on algae. In: Algal ecology – Freshwater benthic ecosystems. Stevenson, R.J., Bothwell, M.L. and Lowe, R.L. (Eds) Academic Press. California. pp. 403–468.

    Google Scholar 

  • Girotti, A.W. (1990). Photodynamic lipid peroxidation in biological systems. Photochem Photobiol, 51(4), 497–509.

    Article  CAS  Google Scholar 

  • Gladysheva, T.B., Oden, K.L. and Rosen, B.P. (1994). Properties of the arsenate reductase of plasmid R773. Biochemistry, 33, 7288–7293.

    Article  CAS  Google Scholar 

  • Goldberg, E.D. and Gross, M.G. (1971). Man’s impact on terrestrial and oceanic ecosystems. Matthews, W.H., Smith, F.E. and Goldberg, E.D. (Eds). MIT Press, Cambridge, Massachusetts, Part V.

    Google Scholar 

  • Green, B., Hosea, M., Mcpherson, R., Henzl, M., Alexander, M.D. and Darnall, D.W. (1986). Interaction of gold (I) and gold (III) complexes with algal biomass. Environ Sci Technol, 20, 627–632.

    Article  Google Scholar 

  • Halliwell, B. and Gulleridge, J.M.C. (1999). Free radicals in biology and medicine. Oxford University Press, 3, 936.

    Google Scholar 

  • Harding, J.P.C. and Whitton, B.A. (1976). Resistance to zinc of Stigeoclonium tenue in the field and the laboratory. Br Phycol J, 11, 417–426.

    Article  Google Scholar 

  • Harding, J.P.C. and Whitton, B.A. (1978). Zinc, cadmium and lead in water, sediments and submerged plants of the Derwent Reservoir, Northern England. Wat Res, 12, 307–316.

    Article  CAS  Google Scholar 

  • Hashim, M.A. and Chu, K.M. (2004). Biosorption of cadmium by brown, red and green seaweeds. Chem Eng J, 97, 249–255.

    Article  CAS  Google Scholar 

  • Hassan, H.M. and Scandalios, J.M. (1990). Superoxide dismutases in aerobic organisms. In: Stress responses in plants: Adaptation and acclimatation mechanisms. Alscher, R.G. and Cumming, J.R. (Eds). Wiley-Liss, New York. pp. 175–199.

    Google Scholar 

  • Haug, A. (1967). The affinity of some divalent metals to different types of alginates. Acta Chem Eng J, 70, 115–124.

    Google Scholar 

  • Hirata, S. and Toshimitsu, H. (2007). Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS. Appl Organomet Chem, 21(6), 447–454.

    Article  CAS  Google Scholar 

  • Holan, Z.R. and Volesky, B. (1994). Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng, 41, 819–825.

    Article  Google Scholar 

  • Hollibaugh, J.T., Seibert, D.L.R. and Thomas, W.H. (1980). A comparison of the acute toxicities of ten heavy metals to phytoplankton from Saanich Inlet, BC, Canada. Estuar Coast Mar Sci, 10, 93–105.

    Article  CAS  Google Scholar 

  • Holovská, K., Lenártová, V., Pedrajas, J.R., Peinado, J., Lopéz-Barea, J., Rosival, I. and Legáth, J. (1996). Superoxide dismutase, glutathione peroxidase and glutathione reductase in sheep organs. Comp Biochem Physiol, 115(B), 451–456.

    Article  Google Scholar 

  • Imamul Huq, S.M., Bulbul, A., Choudhury, M.S., Alam, S. and Kawai, S. (2005). Arsenic bioaccumulation in a green alga and its subsequent recycling in soil of Bangladesh. In: Natural Arsenic in Groundwater: Occurrence, Remediation and Management. Bundschuh, J. and Bhattacharya, P. (Eds), Balkema, New York. pp. 119–124.

    Google Scholar 

  • Jordanova, A., Strezov, A., Ayranov, M., Petkov, N. and Stoilova, T. (1999). Heavy metal assessment in algae, sediments and water from the Bulgarian Black Sea Coast. Water Sci Tech, 39, 207–212.

    Article  CAS  Google Scholar 

  • Jurewicz, S., & Buikema, A. L. (1980). Effects of arsenate on algae, Daphnia, and mosquito fish. Va J Sci, 31(124), 124.

    Google Scholar 

  • Karpinski, S., Escobar, C., Karpinska, B., Creissen, G. and Mullineaux, P. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell, 9, 627–640.

    Article  CAS  Google Scholar 

  • Karthikeyan, S. and Hirata, S. (2003). Arsenic speciation in environmental samples. Anal Lett, 36, 2355–2366.

    Article  CAS  Google Scholar 

  • Keeney, W.L., Breck, W.G., Van Loon, G.W. and Page, J.A. (1976). The determination of trace metals in Cladophora glomerataC. glomerata as a potential biological monitor. Wat Res, 10(11), 981–984.

    Article  CAS  Google Scholar 

  • Klimmek, S., Stan, H.J., Wilke, A., Bunke, G. and Buchholz, R. (2001). Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol, 35, 4283–4288.

    Article  CAS  Google Scholar 

  • Klumpp, D.W. (1980). Accumulation of Arsenic from Water and Food by Littorina littoralis and Nucella lapillus. Mar Biol, 58, 265–274.

    Article  CAS  Google Scholar 

  • Klumpp, D.W. and Peterson, P.J. (1979). Arsenic and other trace elements in the waters and organisms of an estuary in SW England. Environ Poll, 19(1), 11–20.

    Article  CAS  Google Scholar 

  • Knauer, K. and Hemond, H. (2000). Accumulation and Reduction of Arsenate by the freshwater green Alga Chlorella sp. (Chlorophyta). J Phycol, 36, 506–509.

    Article  CAS  Google Scholar 

  • Knowles, F.C. and Benson, A.A. (1983). The biochemistry of arsenic. Trends Biochem Sci, 8, 178–180.

    Article  CAS  Google Scholar 

  • Kratochvil, D. and Volesky, B. (1998). Advances in biosorption of heavy metals. TIBTECH, 16, 291–300.

    Article  CAS  Google Scholar 

  • Larsen, E.H. (1995). Speciation of dimethylarsinyl-riboside derivatives (arsenosugars) in marine reference materials by HPLC-ICP-MS. Fresenius’ J Anal Chem, 352(6), 582–588.

    Article  CAS  Google Scholar 

  • Lau, P.S., Lee, H.Y., Tsang, C.C.K., Tam, N.F.Y. and Wong, Y.S. (1999). Effect of metal interference, pH and temperature on Cu and Ni biosorption by Chlorella vulgaris and Chlorella miniata. Environ. Technol., 20, 953–961.

    Article  CAS  Google Scholar 

  • Lee, B.Y., Lee, K.W., McGarry, M.G. and Graham, M. (1980). Overview of wastewater treatment and resource recovery. IDRC Report. Workshop on High-Rate Algae-Ponds. Singapore.

    Google Scholar 

  • Lee, H.S., Suh, J.H., Kim, B.L. and Yoon, T. (2004). Effect of aluminium in two-metal biosorption by an algal biosorbent. Minerals Eng, 17, 487–493.

    Article  CAS  Google Scholar 

  • Lengke, M.F., Fleet, M.E. and Southam, G. (2006a). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (III)-chloride complexes. Langmuir, 22, 2780–2787.

    Article  CAS  Google Scholar 

  • Lengke, M.F., Ravel, B, Fleet, M.E., Wanger, G., Gordon, R.A. and Southam, G. (2006). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Envir Sci Technol, 40, 6304–6309.

    Article  CAS  Google Scholar 

  • Lengke, M.F. and Southam, G. (2006). Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochem Cosmochim Acta, 70, 3646–3661.

    Article  CAS  Google Scholar 

  • Liangfang, W. and Jianghong, H. (1994). Chronic arsenism from drinking water in some areas of Xinjiang, China. In: Arsenic in the Environment, Part II: Human Health and Ecosystem effects. Nriagu, J.O. (Ed.). John Wiley & Sons Inc., New York. pp. 159–172.

    Google Scholar 

  • Liu, J. and Rosen, B.P. (1997). Ligand interactions of the ArsC arsenate reductase. J Biol Chem, 272(34), 21084–21089.

    Article  CAS  Google Scholar 

  • Liu, J., Zheng, B., Aposhian, H.V., Zhou, Y., Chen, M.L., Zhang, A. and Waalkes, M.P. (2002). Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect, 110, 119–122.

    Article  Google Scholar 

  • Lo´pez-Maury, L., Florencio, F.J. and Reyes, J.C. (2003). Arsenic Sensing and Resistance System in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol, 185(18), 5363–5371.

    Google Scholar 

  • Loewus, F.A. and Loewus, M.W. (1983). Myo-inositol: Its biosynthesis and metabolism. Annu Rev Plant Physiol, 34, 137–161.

    Article  CAS  Google Scholar 

  • Loretto, C., Moenne, A. and Correa, J.A. (2005). Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. J Phycol, 41, 1184–1195.

    Article  CAS  Google Scholar 

  • Lunde, G. (1970). Analysis of arsenic and selenium in marine raw materials. J Sci Fd Agric, 21, 242–247.

    Article  CAS  Google Scholar 

  • Macfarlane, G.R. and Burchett, M.D. (2001). Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.). Vier Mar Pollut Bull, 42, 233–240.

    Article  CAS  Google Scholar 

  • Madsen, A.D., Goessler, W., Pedersen, S.N. and Francesconi, K.A. (2000). Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J Anal At Spectrom, 15, 657–662.

    Article  CAS  Google Scholar 

  • Maeda, H., Hori, S., Ohizumi, H., Segawa, T., Kakehi, Y., Ogawa, O. and Kakizuka, A. (2004). Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ, 11, 737–746.

    Article  CAS  Google Scholar 

  • Maeda, S., Kumar, K., Maeda, M., Higashi, S. and Takashita, T. (1987). Bioaccumulation of arsenic by fresh water algae (Nostoc sp.) and the application to the removal of inorganic arsenic from an aqueous phase. Appl Organomet Chem, 1, 363–370.

    Article  CAS  Google Scholar 

  • Maeda, S., Kusadome, K., Arima, H., Ohki, A., Naka, K. (1992). Biomethylation of arsenic and its excretion by the alga Chlorella vulgaris. Appl Organomet Chem, 6(4), 407–413.

    Article  CAS  Google Scholar 

  • Maeda, S., Nakashima, S., Takeshita, T. and Higashi, S. (1985). Bioaccumulation of Arsenic by freshwater algae and the application to the removal of Inorganic arsenic from an aqueous phase, Part II, by Chlorella vulgaris isolated from Arsenic Polluted environment. Separation Sc Tech, 20(2&3), 153–161.

    Article  CAS  Google Scholar 

  • Mahapatra, H. and Gupta, R. (2005). Concurrent sorption of Zn (II), Cu (II) and Co (II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresource Technol., 96, 1387–1398.

    Article  CAS  Google Scholar 

  • Mallick, N. and Mohan, F.H. (2000). Reactive oxygen species: Response of algal cells. J Plant Physiol, 157, 183–193.

    Article  CAS  Google Scholar 

  • Mandal, B.K., Roy Chowdhury, T., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K. and Dhar, R.K. (1996). Arsenic in groundwater in seven districts of West Bengal, India: The biggest arsenic calamity in the world. Curr Sci, 70, 976–986.

    CAS  Google Scholar 

  • Mandal, B.K., Roy Chowdhury, T., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K. and Tamili, D.K. (1997). In reply to “chronic arsenic toxicity in West Bengal”. Curr Sci, 72, 114–117.

    CAS  Google Scholar 

  • Marcum, K.B. (1998). Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Science, 38,1214–1218.

    Article  Google Scholar 

  • Matheickal, J.T. and Yu Q. (1996). Biosorption of lead from aqueous solutions by marine alga Ecklonia radiate. Water Sci Technol, 34, 1–7.

    Article  CAS  Google Scholar 

  • McGriff, E.C. and McKinney, R.E. (1972). The removal of nutrients and organics by activated algae. Wat Res, 6, 1155–1168.

    Article  CAS  Google Scholar 

  • McKnight, D.M. and Morel, F.M.F. (1979). Release of weak and strong copper complexing agents by algae. Limnol Oceanogr, 24, 823–837.

    Article  CAS  Google Scholar 

  • McKnight, D.M. and Morel F.M.M. (1980). Copper complexation by siderophores from filamentous blue-green-algae. Limnol Oceanogr, 25, 62.

    Article  CAS  Google Scholar 

  • McShan, M., Trieff, N.M. and Grajger, D. (1974). Biological treatment of waste-waters using algae and artemia. J Wat Poll Control Fed, 46, 1742–1750.

    Google Scholar 

  • McSheehy, S. and Szpunar, J. (2000). Speciation of Arsenic in edible algae by bidimensional size exclusion anion exchange HPLC with dual ICP-MS and Electrospray Ms/MS detection. J Annal At Spectrom, 15, 79–87.

    Article  CAS  Google Scholar 

  • Mehta, S.K. and Gaur, J.P. (2001a). Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng, 18, 1–13.

    Article  Google Scholar 

  • Mehta, S.K. and Gaur, J.P. (2001b). Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol, 55, 379–382.

    Article  CAS  Google Scholar 

  • Mehta, S.K. and Gaur, J.P. (2001c). Removal of Ni and Cu from single binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol, 37, 261–271.

    Article  Google Scholar 

  • Mehta, S.K. and Gaur, J.P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit Rev Biotech, 25, 113–152.

    Article  CAS  Google Scholar 

  • Mehta, S.K., Singh, A. and Gaur, J.P. (2002). Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: Influence of pH, temperature, culture age and cations. J Environ Sci Health, Part A 37, 399–414.

    Article  CAS  Google Scholar 

  • Mehta, S.K., Tripathi, B.N. and Gaur, J.P. (2002). Enhanced sorption of Cu2+ and Ni2+ by acid-pretreated Chlorella vulgaris from single and binary metal solutions. J Appl Phycol, 14, 267–273.

    Article  CAS  Google Scholar 

  • Meier, J., Kienzl, N., Goessler, W. and Francesconi, K.A. (2005). The occurrence of thio-arsenosugars in some samples of marine algae. Environ Chem, 2(4), 304–307.

    Article  CAS  Google Scholar 

  • Michnowicz, C. J., & Weaks, T. E. (1984). Effects of pH on toxicity of As, Cr, Cu, Ni and Zn to Selenastrum capricornutum Printz. Hydrobiologia, 118(3), 299–305.

    Article  CAS  Google Scholar 

  • Mitchell, R.D., Ayala-Fierro, F. and Carter, D.E. (2000). Systemic indicators of inorganic arsenic toxicity in four animal species. J Toxicol Environ Health, 59, 119–134.

    Article  CAS  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem, 212, 540–546.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, R., Rosen, B.P., Phung, L.T. and Silver, S. (2002). Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol Rev, 26, 311–325.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, R. and Rosen, B.P. (2002). Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect, 110 Suppl (5), 745–748.

    Google Scholar 

  • Mukhopadhyay, R., Shi, J. and Rosen, B.P. (2000). Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem, 275, 21149–21157.

    Article  CAS  Google Scholar 

  • Nagalakshmi, N. and Prasad, M.N.V. (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci, 160, 291–299.

    Article  CAS  Google Scholar 

  • National Research Council (1999). Arsenic in Drinking Water. National Academy Press, Washington DC.

    Google Scholar 

  • Nayak, D., Nag, M., Banerjee, S., Pal, R., Laskar, S. and Lahiri, S. (2006). Preconcentration of 198Au in a green alga, Rhizoclonium. J Radioanal Nucl Chem, 268, 337–340.

    Article  CAS  Google Scholar 

  • Niu, H. and Volesky, B. (2000). Gold-cyanide biosorption with L-cysteine. J Chem Technol Biotechnol, 75, 436–442.

    Article  CAS  Google Scholar 

  • Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol, 49, 249–279.

    Article  CAS  Google Scholar 

  • Nordi, C.S.F., Vieira, A.A.H. and Nascimanto, O.R. (2005). The metal binding capacity of Anabaena spiroides extracellular polysaccharide: An EPR study. Process Biochem, 40, 2215–2224.

    Article  CAS  Google Scholar 

  • Ofer, R., Yerachmiel, A. and Shmuel, Y. (2003). Marine microalgae as biosorbent for cadmium and nickel in water. Water Environ Res, 75, 246–253.

    Article  CAS  Google Scholar 

  • Okamoto, O.K., Asano, C.S., Aidar, E. and Colepicolo, P. (1996). Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis. J Phycol, 32, 74–79.

    Article  CAS  Google Scholar 

  • Okamoto, O.K. and Colepicolo, P. (2001). Circadian protection against reactive oxygen species involves daily synthesis of manganese and iron-containing superoxide dismutase in Gonyaulax polyedra. Biol Rhythm Res, 32, 439–448.

    Article  CAS  Google Scholar 

  • Okamoto, O.K., Shao, L., Hastings, J.W. and Colepicolo, P. (1999). Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dianoflagellate Gonyaulax polyedra. Comp Biochem Physiol, C 123, 75–83.

    CAS  Google Scholar 

  • Ozer, A., Ozer, D. and Ekiz, H.I. (1999). Application of Freundlich and Langmuir models to multistage purification process to remove heavy metal ions by using Schizomeria. Process Biochemistry, 34(9), 919–927.

    Article  CAS  Google Scholar 

  • Pandey, S., Rai, R. and Rai, L.C. (2012). Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics, 75, 921–937.

    Article  CAS  Google Scholar 

  • Parial, D., Patra, H.K., Dasgupta, A.K. and Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol, 47, 22–29.

    Article  CAS  Google Scholar 

  • Pinto, E., Sigaud-Kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D. and Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. J Phycol, 39, 1–11.

    Article  Google Scholar 

  • Pistocchi, R.F., Balboni, G.V. and Boni. L. (1997). Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. Eur J Phycol, 32, 125–132.

    Google Scholar 

  • Pradhan, S., Singh, S., Rai, L.C. and Parker, D.L. (1998). Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J Microb Biotechnol, 8, 53–60.

    Google Scholar 

  • Prasad, B.N. and Godward, M.B.E. (1968). Cytology of irradiated Mougeotia sp. Nucleus, 11, 43–49.

    Google Scholar 

  • Prasad, B. B., Banerjee, S., & Lakshmi, D. (2006). An AlgaSORB column for the quantitative sorption of arsenic (III) from water samples. Water quality research journal of Canada, 41(2), 190–197.

    CAS  Google Scholar 

  • Prasher, S.O., Beaugeard, M., Hawari, J., Bera, P., Patel, R.M. and Kim, S.H. (2004). Biosorption of heavy metals by red algae (Palmaria plamata). Environ Technol, 25, 1097–1106.

    Article  CAS  Google Scholar 

  • Rai, L.C., Gaur, J.P. and Kumar, H.D. (1981). Phycology and heavy-metal pollution. Biol. Rev Cambridge Philos Soc, 56, 99–151.

    Article  CAS  Google Scholar 

  • Reed, R.H. and Gadd, G.M. (1990). Metal tolerance in eukaryotic and prokaryotic algae. In: Heavy metal tolerance in plants: Evolutionary aspects. Shaw, A.J. (Ed.). CRC Press, Boca Raton. pp. 1105–1118.

    Google Scholar 

  • Regelsberger, G., Obinger, C., Zoder, R., Altmann, F. and Peschek, G.A. (1999). Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: Identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiol Lett, 170, 1–12.

    Article  CAS  Google Scholar 

  • Reuther, R. (1992). Arsenic introduced into a littoral freshwater model ecosystem. Sci Total Environ, 115, 219–237.

    Article  CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N.J. and Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 20, 933–956.

    Article  CAS  Google Scholar 

  • Rimbach, G., De Pascual-Teresa, S., Ewins, B.A., Matsugo, S., Uchida, Y., Minihane, A.M., Turner, R., VafeiAdou, K. and Weinberg, P.D. (2003). Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica, 33(9), 913–925.

    Article  CAS  Google Scholar 

  • Rodriguez-Ariza, A., Dourado, G., Navas, J.I., Pueyo, C. and Lopez-Barea, J. (1991). Pro-mutagen activation by fish liver as a biomarker of littoral pollution. Environ Mol Mutagen, 24, 116–123.

    Article  Google Scholar 

  • Rosen, B.P., Bhattacharjee, H., Zhou, T.Q. and Walmsley, A.R. (1999). Mechanism of the ArsA ATPase. Biochim Biophys Acta, 1461, 207–215.

    Article  CAS  Google Scholar 

  • Rosen, B.P. (1999a). Families of arsenic transporters. Trends Microbiol, 7, 207–212.

    Article  CAS  Google Scholar 

  • Roux, J.C. (1998). Use of dead recovered biomass to adsorb heavy metals from wastewaters. Water Quality Intl, June 21–26. Vancouver, Canada.

    Google Scholar 

  • Rubio, R., Ruíz Chancho, M.J. and López-Sánchez, J.F. (2010). Sample pre-treatment and extraction methods that are crucial to arsenic speciation in algae and aquatic plants. TrAC Trends Anal Chem, 29(1), 53–69.

    Article  CAS  Google Scholar 

  • Sandau, E., Sandau, P. and Pulz, O. (1996). Heavy metal sorption by marine algae and algal by-products. Acta Biotechnol 16, 227–235.

    Article  CAS  Google Scholar 

  • Sanders, J.G. (1979). Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae). J Phycol, 15(4), 424–428.

    Article  CAS  Google Scholar 

  • Sanders, J.G. and Windom, H.L. (1980). The uptake and reduction of arsenic species by marine algae. Estuar cstlmar Sci, 10, 555–567.

    Article  CAS  Google Scholar 

  • Sanders, J.G, Osman, R.W. and Riedel, G.F. (1989). Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebrates Eurytemora affinis, Balanusim provisus and Crassostrea virginica. Mar Biol, 103, 319–325.

    Article  CAS  Google Scholar 

  • Sanders, O.I., Rensing, C., Kuroda, M., Mitra, B. and Rosen, B.P. (1997). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol, 179, 3365–3367.

    CAS  Google Scholar 

  • Say, P.J., Diaz, B.M. and Whitton, B.A. (1977). Influence of zinc on lotic plants. I: Tolerance of Hormidium sp. to zinc. Freshwater Biol, 7, 357–376.

    Article  CAS  Google Scholar 

  • Shamsuddoha, A.S.M., Bulbul, A. and Imamul Huq, S.M. (2006). Accumulation of arsenic in green algae and its subsequent transfer to the soil–plant system. Bangladesh J Microbiol, 22(2), 148–151.

    Google Scholar 

  • Sheng, P.X., Tan, L.H., Chen, J.P. and Ting, Y.P. (2004b). Biosorption performance of two brown marine algae for removal of chromium and cadmium. J Dispersion Sci Technol, 25, 679–686.

    Article  CAS  Google Scholar 

  • Sheng, P.X., Ting, Y.P., Chen, J.P. and Hong, L. (2004a). Separation of lead, copper, cadmium, zinc and nickel by marine algal biomass: Characterization of biosorption capacity and investigation of mechanisms. J Colloid Interf Sci, 275, 131–141.

    Article  CAS  Google Scholar 

  • Silver, S., Phung, L.T. and Rosen, B.P. (2001). Arsenic metabolism: Resistance, reduction and oxidation. In: Environmental Chemistry of Arsenic. Frankenberger, W.T. Jr. (Ed.). Marcel Dekker, New York. pp. 247–272.

    Google Scholar 

  • Singh, S., Pradhan, S. and Rai, L.C. (1998). Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory grown Microcystis. Process Biochem, 33, 495–504.

    Article  CAS  Google Scholar 

  • Šlejkovec, Z., Kápolna, E., Ipolyi, I. and van Elteren, J.T. (2006). Arsenosugars and other arsenic compounds in littoral zone algae from the Adriatic Sea. Chemosphere, 63(7), 1098–1105.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (1993). The role of active Oxygen in the response of plants to water deficit and dessication. New Phytol, 125, 27–58.

    Article  CAS  Google Scholar 

  • Srivastava, A.K., Bhargava, P., Thapar, R. and Rai, L.C. (2009). Differential response of antioxidative defense system of Anabaena doliolum under arsenite and arsenate stress. J Basic Microbiol, 49, S63–S72.

    Article  Google Scholar 

  • Steele, R.L. and Thursby, G.B. (1983). A toxicity test using life stages of Champia parvula (Rhodophyta). In: Aquatic toxicology and hazard assessment: Sixth symposium. Bishop, W.E., Cardwell, R.D., Heidolph, B.B. (Eds). ASTM STP 802, American Society for Testing Materials, Philadelphia, pp. 73–89.

    Google Scholar 

  • Swift, D.T. and Forciniti, D. (1997). Accumulation of lead by Anabaena cylindrical: Mathematical modeling and an energy dispersive X-Ray study. Biotechnol Bioeng, 55(2), 408–418.

    Article  CAS  Google Scholar 

  • Takamatsu, T., Aoki, H. and Yoshida, T. (1982). Determination of arsenate, arsenite, monomethylarsonate, and dimethylarsinate in soil polluted with arsenic. Soil Sci, 133, 239–246.

    Article  CAS  Google Scholar 

  • Takamura, N., Kasai, F. and Watanabe, M.M. (1989). Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol, 1, 39–52.

    Article  CAS  Google Scholar 

  • Ting, Y.P., Teo, W.K. and Soh, C.Y. (1995). Gold uptake by Chlorella vulgaris. J Appl Phycol, 7, 97–100.

    Article  CAS  Google Scholar 

  • Tisa, L.S. and Rosen, B.P. (1990). Molecular characterization of an anion pump: The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem, 265, 190–194.

    CAS  Google Scholar 

  • Tondel, M., Rahman, M., Magnuson, A., Chowdhury, I.A., Faruquee, M.H., Ahmad, S.A. (1999). The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect, 107, 727–729.

    Article  CAS  Google Scholar 

  • Vahter, M. (2000). Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett, 209, 112–113.

    Google Scholar 

  • Vijayaraghavan, K., Jegan, J., Palanivenu, K. and Velan, M. (2005). Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere, 60, 419–426.

    Article  CAS  Google Scholar 

  • Walsh, R.S. and Hunter, K.A. (1992). Influence of phosphorus storage on the uptake of cadmium by the marine alga Macrocystis pyrifera. Limnol Oceanogr, 37(7), 1361–1369.

    Article  CAS  Google Scholar 

  • Whitton, B.A. (1980). Zinc and plants in rivers and streams. In: Zinc in the environment. Part (II): Health effects. Nriagu, J.O. (Ed.). John Wiley, New York. pp. 364–400.

    Google Scholar 

  • Whitton, B.A. (1984). Algae as monitors of heavy metals in freshwaters. In: Algae as Ecological Indicators. Shubert, L.E. (Ed.). Academic Press. New York.

    Google Scholar 

  • Whitton, B.A., Say, P.J. and Wehr, J.D. (1981). Use of plants to monitor heavy metals in rivers. In: Heavy metals in northern England: Environmental and biological aspects. Say, P.J. and Whitton, B.A. (Eds). Botany Department, University of Durham. pp. 135–145.

    Google Scholar 

  • Whitton, B.A. (1970). Toxicity of heavy metals to Chlorophyta from running waters. Arch Mikrobiol, 72, 353–360.

    CAS  Google Scholar 

  • Willsky, G.R. and Malamy, M.H. (1980). Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol, 144, 366–374.

    CAS  Google Scholar 

  • Wong, S.L, Nakamoto, L. and Wainwright, J.F. (1994). Identification of toxic metals in affected algal cells in assay of wastewaters. J Appl Phycol, 6, 405–414.

    Article  CAS  Google Scholar 

  • Wysocki, R., Chéry, C.C., Wawrzycka, D., van Hulle, M., Cornelis, R., Thevelein, J.M. and Tamás, M.J. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol, 40(6), 1391–1401.

    Article  CAS  Google Scholar 

  • Yamaoka, Y. and Takimura, O. (1986). Marine algae resistant to inorganic arsenic. O Agric Biol Chem, 50, 185–186.

    Article  CAS  Google Scholar 

  • Yamaoka, Y., Takimura, O., & Fuse, H. (1988). Environmental factors relating to arsenic accumulation by Dunaliella sp. Applied organometallic chemistry, 2(4), 359–364.

    Google Scholar 

  • Yamaoka, Y., Takimura, O., Fuse, H., & Kamimura, K. (1992). Effects of arsenic on the organic component of the alga Dunaliella salina. Applied organometallic chemistry, 6(4), 357–362.

    Article  CAS  Google Scholar 

  • Yin, P., Yu, Q., Lin Z. and Kaewsarn, P. (2001). Biosorption and desorption of cadmium (II) by biomass of Laminaria japonica. Environ Technol, 22, 509–514.

    Article  CAS  Google Scholar 

  • Yompakdee, C., Ogawa, N., Harashima, S. and Oshima, Y. (1996b). A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Mol Gen Genet, 251, 580–590.

    CAS  Google Scholar 

  • Yu, Q. and Kaewsarn, P. (1999). Fixed-bed study of copper (II) removal from aqueous solutions by marine alga Durvillaea potatorum. Environ Technol, 20, 1005–1008.

    Article  CAS  Google Scholar 

  • Zhou, J.L., Huang, P.L. and Lin, R.G. (1998). Sorption and desorption of Cu and Cd by macroalgae. Environ Pollut, 101, 67–75.

    Article  CAS  Google Scholar 

  • Zutshi, S., Bano, F., Ningthoujam, M., Habib, K. and Fatma, T. (2014). Metabolic Adaptations to Arsenic-Induced Oxidative Stress in Hapalosiphon fontinalis-339. Int J Innov Res Sci Engg Tech, 3(2), 9386–9394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Capital Publishing Company

About this chapter

Cite this chapter

Bhattacharya, P., Chakraborty, N., Pal, R. (2015). Bioremediation of Toxic Metals Using Algae. In: Das, D. (eds) Algal Biorefinery: An Integrated Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-22813-6_19

Download citation

Publish with us

Policies and ethics