Skip to main content

Public Health Informatics

  • Chapter
Clinical Informatics Study Guide

Abstract

Public health informatics applies computer and information science methods to promote population health and support the business of public health. Although computers have long been used to capture, manage and process information on population health statistics, the field of public health informatics is an emerging discipline that goes beyond numbers. Information systems that receive and send data to electronic health records are increasingly implemented in governmental public health agencies in the U.S. as well as around the world. These systems support a number of core public health business processes, including surveillance, prevention, and community health assessment. Like in clinical contexts, information systems are making public health business processes more efficient, which leads to better understanding of population health status as well as the identification of emerging health threats. This chapter defines the scope of public health informatics and discusses how the emerging field complements and relates to clinical informatics. Clinical informaticians will likely interact with public health agencies to establish information exchange for compliance with public health laws as well as a channel to receive knowledge relevant to the health status and threats facing their populations and communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fourman M. Informatics research report EDI-INF-RR-0139. [Internet] Edinburgh: University of Edinburgh; 2002 [cited 20 Feb 2015]; Available from: http://www.inf.ed.ac.uk/publications/online/0139.pdf.

  2. Coy W. Defining discipline. In: Freksa C, Jantzen M, Valk M, editors. Foundations of computer science. Heidelberg: Springer; 1997. p. 21–35.

    Chapter  Google Scholar 

  3. Hersh W. A stimulus to define informatics and health information technology. BMC Med Inform Decis Mak. 2009;9:24. Epub 2009/05/19.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kulikowski CA, Shortliffe EH, Currie LM, Elkin PL, Hunter LE, Johnson TR, et al. AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. J Am Med Inform Assoc. 2012;19(6):931–8. Epub 2012/06/12.

    Article  PubMed Central  PubMed  Google Scholar 

  5. The science of informatics. Bethesda: American Medical Informatics Association; [Internet] [cited 25 Jul 2014 ]; Available from: http://www.amia.org/about-amia/science-informatics.

  6. Clinical Informatics. Bethesda: American Medical Informatics Association; [Internet] [cited 25 Jul 2014]; Available from: http://www.amia.org/applications-informatics/clinical-informatics

  7. Magnuson JA, O’Carroll P. Introduction to public health informatics. In: Magnuson JA, Fu Jr PC, editors. Public health informatics and information systems. London: Springer; 2014. p. 3–18.

    Google Scholar 

  8. Bravata DM, McDonald KM, Smith WM, Rydzak C, Szeto H, Buckeridge DL, et al. Systematic review: surveillance systems for early detection of bioterrorism-related diseases. Ann Intern Med. 2004;140(11):910–22.

    Article  PubMed  Google Scholar 

  9. Federal Bureau of Investigation. Amerithrax Investigation. 2008[Internet][cited 13 Dec 2014 ]; Available from: http://www.fbi.gov/anthrax/amerithraxlinks.htm.

  10. Tu AT. Overview of sarin terrorist attacks in Japan. TACS Symp Series. 1999;745:304–17.

    Article  Google Scholar 

  11. Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431–41.

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro JS, Genes N, Kuperman G, Chason K. Clinical advisory committee H1N1 working group NYCIE, Richardson LD. Health information exchange, biosurveillance efforts, and emergency department crowding during the spring 2009 H1N1 outbreak in New York City. Ann Emerg Med. 2010;55(3):274–9.

    Article  PubMed  Google Scholar 

  13. Bialek SR, Allen D, Alvarado-Ramy F, Arthur R, Balajee A, Bell D, et al. First confirmed cases of middle east respiratory syndrome coronavirus (MERS-CoV) infection in the united states, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities - May 2014. MMWR Morb Mortal Wkly Rep. 2014;63(19):431–6.

    PubMed  Google Scholar 

  14. Ejima K, Aihara K, Nishiura H. Probabilistic differential diagnosis of Middle East respiratory syndrome (MERS) using the time from immigration to illness onset among imported cases. J Theor Biol. 2014;346:47–53.

    Article  PubMed  Google Scholar 

  15. Mandl KD. Ebola in the united states: EHRs as a public health tool at the point of care. JAMA. 2014.

    Google Scholar 

  16. Massoudi BL, Goodman KW, Gotham IJ, Holmes JH, Lang L, Miner K, et al. An informatics agenda for public health: summarized recommendations from the 2011 AMIA PHI Conference. J Am Med Inform Assoc. 2012;19(5):688–95. Epub 2012/03/08.

    Article  PubMed Central  PubMed  Google Scholar 

  17. IOM. The future of public health. Washington: National Academy Press; 1988. 240 p.

    Google Scholar 

  18. Dixon BE, Grannis SJ. Public health informatics infrastructure. In: Magnuson JA, Fu Jr PC, editors. Public health informatics and information systems. London: Springer; 2014. p. 69–88.

    Google Scholar 

  19. Centers for medicare and medicaid services. Meaningful use. Baltimore: Centers for Medicare & Medicaid Services; 2013 [updated 23 Aug; cited 2013 27 Aug ]; Available from: https://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.html.

  20. Peppard PE, Kindig DA, Dranger E, Jovaag A, Remington PL. Ranking community health status to stimulate discussion of local public health issues: the Wisconsin County Health Rankings. Am J Public Health. 2008;98(2):209–12. Epub 2008/01/04.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ranking System. University of Wisconsin Population Health Institute; 2014 [cited 20 Feb 2015]; Available from: http://www.countyhealthrankings.org/ranking-methods/ranking-system.

  22. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol. 2013;9(10), e1003256. Epub 2013/10/23.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Whittaker R, Matoff-Stepp S, Meehan J, Kendrick J, Jordan E, Stange P, et al. Text4baby: development and implementation of a national text messaging health information service. Am J Public Health. 2012;102(12):2207–13. Epub 2012/10/20.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Evans W, Nielsen PE, Szekely DR, Bihm JW, Murray EA, Snider J, et al. Dose–response effects of the text4baby mobile health program: randomized controlled trial. JMIR Mhealth and Uhealth. 2015;3(1), e12. Epub 2015/01/30.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Capurro D, Cole K, Echavarria MI, Joe J, Neogi T, Turner AM. The use of social networking sites for public health practice and research: a systematic review. J Med Internet Res. 2014;16(3), e79. Epub 2014/03/20.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Krisberg K. Budget cuts straining capacity of public health departments: services in demand. The Nation's Health. 2010;40(4):1–16.

    Google Scholar 

  27. Willard R, Shah GH, Leep C, Ku L. Impact of the 2008–2010 economic recession on local health departments. J Public Health Manag Pract. 2012;18(2):106–14. Epub 2012/01/06.

    Article  PubMed  Google Scholar 

  28. Lenert L, Sundwall DN. Public health surveillance and meaningful use regulations: a crisis of opportunity. Am J Public Health. 2012;102(3):e1–7. Epub 2012/03/07.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Drehobl PA, Roush SW, Stover BH, Koo D. Public health surveillance workforce of the future. MMWR Surveill Summ. 2012;61(Suppl):25–9. Epub 2012/07/27.

    PubMed  Google Scholar 

  30. Admin. Medical Doctors, PhDs Enter new apprenticeship program. (work in progress) The Official Blog of the US Department of Labor. 26 Apr, 2012 (ed).

    Google Scholar 

  31. Education S, Office PDP. Public Health Informatics Fellowship Program (PHIFP). Atlanta: U.S. Centers for Disease Control and Prevention; 2012. [updated December 1, 2014; cited 2014 December 23], Available from: http://www.cdc.gov/PHIFP/index.html.

    Google Scholar 

  32. Mac McCullough J, Goodin K. Patterns and correlates of public health informatics capacity among local health departments: an empirical typology. Online J Public Health Inform. 2014;6(3), e199. Epub 2015/01/20.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Thacker SB, Qualters JR, Lee LM. Public health surveillance in the United States: evolution and challenges. MMWR Surveill Summ. 2012;61:3–9. Epub 2012/07/27.

    PubMed  Google Scholar 

  34. Smith PF, Hadler JL, Stanbury M, Rolfs RT, Hopkins RS. “Blueprint version 2.0”: updating public health surveillance for the 21st century. J Public Health Manag Pract. 2013;19(3):231–9. Epub 2012/07/05.

    Article  PubMed  Google Scholar 

  35. Association of schools and programs of public health. A master of public health degree for the 21st century: key considerations, design features, and critical content of the core. Washington, DC; 2014. Available from: http://www.aspph.org/wp-content/uploads/2014/06/MPHPanelReportFINAL_2014-11-03REVISEDfinal1.pdf.

  36. JPHIT. About JPHIT. 2014 [Internet] [cited 22 Feb 2015]; Available from: http://jphit.org/.

  37. Grannis S, Biondich PG, Mamlin BW, et al. How disease surveillance systems can serve as practical building blocks for a health information infrastructure: The Indiana Experience. AMIA Annu Symp Proc. Wash; Fall 2005.

    Google Scholar 

  38. Gorelick MH, Alpern ER, Singh T, et al. Availability of pediatric emergency visit data from existing data sources. Acad Emerg Med. 2005;12(12):1195–200.

    Article  PubMed  Google Scholar 

  39. Hogan WR, Tsui FC, Ivanov O, Gesteland PH, Grannis S, Overhage JM, Mikanatha N, Robinson JM, Wagner M. Early detection of pediatric respiratory and diarrheal outbreaks from retail sales of electrolyte products. J Am Med Inf Assoc. 2003;10(6):555–62.

    Article  Google Scholar 

  40. Basara HG, Yuan M. Community health assessment using self-organizing maps and geographic information systems. Int J Health Geogr. 2008;7:67.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Monteiro E, Lacey C, Merrick D. The interrelation of demographic and geospatial risk factors between four common sexually transmitted diseases. Sex Transm Infect. 2005;81(1):41–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82(6):816–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Besculides M, Heffernan R, Mostashari F, Weiss D. Evaluation of school absenteeism data for early outbreak detection, New York City. BMC Public Health. 2005;5:105.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Cole R, Leslie E, Donald M, Cerin E, Owen N. Residential proximity to school and the active travel choices of parents. Health Promot J Austr. 2007;18(2):127–34.

    PubMed  Google Scholar 

  45. Vaidyanathan A, Staley F, Shire J, Muthukumar S, Kennedy C, Meyer PA, Brown MJ. Screening for lead poisoning: a geospatial approach to determine testing of children in at-risk neighborhoods. J Pediatr. 2008;19.

    Google Scholar 

  46. Hills RA, Lober JB, Painter IS. Biosurveillance, case reporting, and decision support: public health interactions with a health information exchange. In: Biosurveillance and biosecurity. Berlin: Springer; 2008. p. 10–21.

    Chapter  Google Scholar 

  47. Overhage JM, Suico J, McDonald CJ. Electronic laboratory reporting: barriers, solutions and findings. J Public Health Manag Pract. 2001;7(6):60–6.

    Article  CAS  PubMed  Google Scholar 

  48. Friedlin J, Grannis S, Overhage JM. Using natural language processing to improve accuracy of automated notifiable disease reporting. AMIA Annu Symp Proc. Wash; Fall 2008.

    Google Scholar 

  49. Grannis S, Biondich P, Downs S, Shelley M, Anand V, Egg J. Leveraging open-source matching tools and health information exchange to improve newborn screening follow-up. Atlanta: Public Health Information Network Annu Symp Proc; 2008.

    Google Scholar 

  50. Overhage JM, Grannis S, McDonald CJ. A comparison of the completeness and timeliness of automated electronic laboratory reporting and spontaneous reporting of notifiable conditions. Am J Public Health. 2008;98:344–50. Epub 2008/01/04.

    Article  PubMed Central  PubMed  Google Scholar 

  51. State electronic disease surveillance systems—United States, 2007 and 2010. MMWR Morb Mortal Wkly Rep. 2011;60(41):1421–3.

    Google Scholar 

  52. Dixon BE, Siegel JA, Oemig TV, Grannis S. Electronic health information quality challenges and interventions to improve public health surveillance data and practice. Public Health Rep. 2013;128(6):546–53.

    PubMed Central  PubMed  Google Scholar 

  53. Nguyen TQ, et al. Benefits and barriers to electronic laboratory results reporting for notifiable diseases: the New York city department of health and mental hygiene experience. Am J Public Health. 2007;97(Supplement 1):S142–5.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mandl KD, Overhage JM, Wagner MM, Lober WB, Sebastiani P, Mostashari F, Pavlin JA, Gesteland PH, Treadwell T, Koski E, Hutwagner L, Buckeridge DL, Aller RD, Grannis S. Implementing syndromic surveillance: a practical guide informed by the early experience. J Am Med Inform Assoc. 2004;11(2):141–50.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Uscher-Pines L, Farrell CL, Cattani J, Hsieh YH, Moskal MD, Babin SM, Gaydos CA, Rothman RE. A survey of usage protocols of syndromic surveillance systems by state public health departments in the United States. J Public Health Manag Pract. 2009;15(5):432–8.

    Article  PubMed  Google Scholar 

  56. Buehler JW, Sonricker A, Paladini M, Soper P, Mostashari F. Syndromic surveillance practice in the united states: findings from a survey of state, territorial, and selected local health departments. Adv Dis Surveill. 2008;6:1–8.

    Google Scholar 

  57. Reis BY, Mandl KD. Syndromic surveillance: the effects of syndrome grouping on model accuracy and outbreak detection. Ann Emerg Med. 2004;44(3):235–41.

    Article  PubMed  Google Scholar 

  58. Grannis S, Wade M, Gibson J, Overhage JM. .The Indiana public health emergency surveillance system: ongoing progress, early findings, and future directions. AMIA Annu Symp Proc. 2006;2006:304–8.

    PubMed Central  Google Scholar 

  59. Beskow LM, Sandler RS, Weinberger M. Research recruitment through US central cancer registries: balancing privacy and scientific issues. Am J Public Health. 2006;96(11):1920–6.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Stevens LA, Palma JP, Pandher KK, Longhurst CA. Immunization registries in the EMR Era. Online J Public Health Inform. 2013;5(2):211. Epub 2013/08/08.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Schmittdiel J, Bodenheimer T, Solomon N, Gillies RR, Shortell SM. The prevalence and Use of chronic disease registries in physician organizations. J Gen Intern Med. 2005;20(9):855–8.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Pelletier AR, Siegel PZ, Baptiste MS, Maylahn C. Revisions to chronic disease surveillance indicators, united states, 2004. Prev Chronic Dis. 2005;2(3):A15.

    PubMed Central  PubMed  Google Scholar 

  63. Abramson JS, O'Shea TM, Ratledge DL, Lawless MR, Givner LB. Development of a vaccine tracking system to improve the rate of age-appropriate primary immunization in children of lower socioeconomic status. J Pediatr. 1995;126(4):583–6. Epub 1995/04/01.

    Article  CAS  PubMed  Google Scholar 

  64. Placzek H, Madoff LC. The use of immunization registry-based data in vaccine effectiveness studies. Vaccine. 2011;29(3):399–411.

    Article  PubMed  Google Scholar 

  65. American Immunization Registry Association. Evaluation of data exchange technologies for communicating with IIS. Washington, DC; 2010. Available from: http://www.immregistries.org/resources/AIRA_IIS_TransportLayer_Review.pdf.

  66. National Vaccine Advisory Committee. A pathway to leadership for adult immunization: recommendations of the national vaccine advisory committee: approved by the national vaccine advisory committee on June 14, 2011. Public Health Rep. 2012;127 Suppl 1:1–42.

    Google Scholar 

  67. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst. 2011;103(9):714–36.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Howlader N, Ries LA, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst. 2010;102(20):1584–98.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Barlow L, Westergren K, Holmberg L, Talback M. The completeness of the Swedish Cancer Register: a sample survey for year 1998. Acta Oncol. 2009;48(1):27–33.

    Article  PubMed  Google Scholar 

  70. Cress RD, Zaslavsky AM, West DW, Wolf RE, Felter MC, Ayanian JZ. Completeness of information on adjuvant therapies for colorectal cancer in population-based cancer registries. Med Care. 2003;41(9):1006–12.

    Article  PubMed  Google Scholar 

  71. Zanetti R, Schmidtmann I, Sacchetto L, et al. Completeness and timeliness: Cancer registries could/should improve their performance. Eur J Cancer. 2015;51:1091–8.

    Google Scholar 

  72. Comer KF, Grannis S, Dixon BE, Bodenhamer DJ, Wiehe SE. Incorporating geospatial capacity within clinical data systems to address social determinants of health. Public Health Rep. 2011;126 Suppl 3:54–61.

    PubMed Central  PubMed  Google Scholar 

  73. Dixon BE, Vreeman DJ, Grannis SJ. The long road to semantic interoperability in support of public health: experiences from two states. J Biomed Inform. 2014;49:3–8. Epub 2014/04/01.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Dixon BE, McGowan JJ, Grannis SJ. Electronic laboratory data quality and the value of a health information exchange to support public health reporting processes. AMIA Annu Symp Proc. 2011;2011:322–30. Epub 2011/12/24.

    PubMed Central  PubMed  Google Scholar 

  75. Greenes RA. Definition, scope and challenges. In: Greenes RA, editor. Clinical decision support: the road to broad adoption. 2nd ed. Waltham: Elsevier; 2014.

    Google Scholar 

  76. Dexter PR, Perkins S, Overhage JM, Maharry K, Kohler RB, McDonald CJ. A computerized reminder system to increase the use of preventive care for hospitalized patients. N Engl J Med. 2001;345(13):965–70. Epub 2001/09/29.

    Article  CAS  PubMed  Google Scholar 

  77. Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med. 2006;144(10):742–52.

    Article  PubMed  Google Scholar 

  78. Jaspers MW, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc. 2011;18(3):327–34. Epub 2011/03/23.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Wright A, Sittig DF, Ash JS, Sharma S, Pang JE, Middleton B. Clinical decision support capabilities of commercially-available clinical information systems. J Am Med Inform Assoc. 2009;16(5):637–44. Epub 2009/07/02.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Biondich PG, Dixon BE, Duke J, Mamlin B, Grannis S, Takesue BY, et al. Regenstrief medical informatics: experiences with clinical decision support systems. In: Greenes RA, editor. Clinical decision support: the road to broad adoption. 2nd ed. Burlington: Elsevier, Inc.; 2014. p. 165–87.

    Chapter  Google Scholar 

  81. Dixon BE, Gamache RE, Grannis SJ. Towards public health decision support: a systematic review of bidirectional communication approaches. J Am Med Inform Assoc. 2013;20(3):577–83. Epub 2013/03/08.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Amirfar S, Taverna J, Anane S, Singer J. Developing public health clinical decision support systems (CDSS) for the outpatient community in New York City: our experience. BMC Public Health. 2011;11:753. Epub 2011/10/04.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Jajosky RA, Groseclose SL. Evaluation of reporting timeliness of public health surveillance systems for infectious diseases. BMC Public Health. 2004;4:29. Epub 2004/07/28.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Sickbert-Bennett EE, Weber DJ, Poole C, MacDonald PD, Maillard JM. Completeness of communicable disease reporting, North Carolina, USA, 1995–1997 and 2000–2006. Emerg Infect Dis. 2011;17(1):23–9. Epub 2011/01/05.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Daniel JB, Heisey-Grove D, Gadam P, Yih W, Mandl K, Demaria Jr A, et al. Connecting health departments and providers: syndromic surveillance”s last mile. MMWR Morb Mortal Wkly Rep. 2005;54(Suppl):147–50. Epub 2005/09/24.

    PubMed  Google Scholar 

  86. Wolkin AF, Martin CA, Law RK, Schier JG, Bronstein AC. Using poison center data for national public health surveillance for chemical and poison exposure and associated illness. Ann Emerg Med. 2012;59(1):56–61. Epub 2011/09/23.

    Article  PubMed  Google Scholar 

  87. Wagner MM, Tsui FC, Espino J, Hogan W, Hutman J, Hersh J, et al. National retail data monitor for public health surveillance. MMWR Morb Mortal Wkly Rep. 2004;53(Suppl):40–2. Epub 2005/02/18.

    PubMed  Google Scholar 

  88. Heaivilin N, Gerbert B, Page JE, Gibbs JL. Public health surveillance of dental pain via Twitter. J Dent Res. 2011;90(9):1047–51. Epub 2011/07/20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Dixon BE, Gibson PJ, Comer KF, Rosenman M, editors. Assessing the feasibility of using electronic health records for community health assessments. AMIA Annual Symposium. Washington; 2014.

    Google Scholar 

  90. Prochaska JJ, Pechmann C, Kim R, Leonhardt JM. Twitter = quitter? An analysis of Twitter quit smoking social networks. Tob Control. 2012;21(4):447–9. Epub 2011/07/07.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One. 2011;6(5), e19467. Epub 2011/05/17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Patwardhan A, Bilkovski R. Comparison: Flu prescription sales data from a retail pharmacy in the US with Google Flu trends and US ILINet (CDC) data as flu activity indicator. PLoS One. 2012;7(8), e43611. Epub 2012/09/07.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira N. Haque MHSA, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haque, S.N., Dixon, B.E., Grannis, S.J. (2016). Public Health Informatics. In: Finnell, J., Dixon, B. (eds) Clinical Informatics Study Guide. Springer, Cham. https://doi.org/10.1007/978-3-319-22753-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22753-5_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22752-8

  • Online ISBN: 978-3-319-22753-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics