Skip to main content

Computational Prediction of microRNA Targets

  • Chapter
microRNA: Basic Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 887))

Abstract

Computational prediction of microRNA (miRNA) targets is a fundamental step towards the characterization of miRNA function and the understanding of their role in disease. A single miRNA can regulate hundreds of different gene transcripts through partial sequence complementarity and a single gene may be regulated by several miRNAs acting cooperatively. The remarkable advances made in recent years have allowed the identification of key features for functional miRNA binding sites. A plethora of prediction tools are now available, but their accuracies remain rather poor, as miRNA target recognition has revealed itself to be a very complex and dynamic mechanism, still only partially understood.

In this chapter, the principles of miRNA target prediction in animals are presented, together with the most up-to-date and effective computational approaches and tools available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bulges are unpaired stretches of nucleotides located within one strand of a nucleic acid duplex.

  2. 2.

    miRNAs encoded within the introns of coding genes.

  3. 3.

    ceRNA are coding or noncoding transcripts that regulate other transcripts by competing for shared miRNAs.

  4. 4.

    The gene level test consisted in the prediction of interaction between mRNAs and a given miRNA. The duplex level test consisted in the prediction of interaction between a given fragment of mRNA and a given miRNA.

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP. microRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. doi:10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2013;42:D68–73. doi:10.1093/nar/gkt1181.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Du T. microPrimer: the biogenesis and function of microRNA. Development. 2005;132:4645–52. doi:10.1242/dev.02070.

    Article  CAS  PubMed  Google Scholar 

  6. Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309:1573–6. doi:10.1126/science.1115079.

    Article  CAS  PubMed  Google Scholar 

  7. Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol. 2006;13:1102–7. doi:10.1038/nsmb1174.

    Article  CAS  PubMed  Google Scholar 

  8. Eulalio A, Huntzinger E, Nishihara T, et al. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009;15:21–32. doi:10.1261/rna.1399509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci. 2006;103:4034–9. doi:10.1073/pnas.0510928103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meister G, Landthaler M, Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185–97. doi:10.1016/j.molcel.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  11. Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999;13:3191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selbach M, Schwanhäusser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63. doi:10.1038/nature07228.

    Article  CAS  PubMed  Google Scholar 

  13. Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455:64–71. doi:10.1038/nature07242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40. doi:10.1038/nature09267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tarang S, Weston MD. Macros in microRNA target identification: a comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification. RNA Biol. 2014;11(4):324–33. doi:10.4161/rna.28649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi:10.1016/j.cell.2004.12.035.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2008;19:92–105. doi:10.1101/gr.082701.108.

    Article  PubMed  Google Scholar 

  18. Ding J, Zhou S, Guan J. miRFam: an effective automatic miRNA classification method based on n-grams and a multiclass SVM. BMC Bioinformatics. 2011;12:216. doi:10.1186/1471-2105-12-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou Q, Mao Y, Hu L, et al. miRClassify: an advanced web server for miRNA family classification and annotation. Comput Biol Med. 2014;45:157–60. doi:10.1016/j.compbiomed.2013.12.007.

    Article  CAS  PubMed  Google Scholar 

  20. Grimson A. A targeted approach to miRNA target identification. Nat Methods. 2010;7:795–7. doi:10.1038/nmeth1010-795.

    Article  CAS  PubMed  Google Scholar 

  21. Garcia DM, Baek D, Shin C, et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18:1139–46. doi:10.1038/nsmb.2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3, e85. doi:10.1371/journal.pbio.0030085.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500. doi:10.1038/ng1536.

    Article  CAS  PubMed  Google Scholar 

  24. Grimson A, Farh KK-H, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27:91–105. doi:10.1016/j.molcel.2007.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014;5:23. doi:10.3389/fgene.2014.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays. 2015;37:379–88. doi:10.1002/bies.201400191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lagana A, Acunzo M, Romano G, et al. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res. 2014;42:5416–25. doi:10.1093/nar/gku202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin C, Nam J-W, Farh KK-H, et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010;38:789–802. doi:10.1016/j.molcel.2010.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19:321–7. doi:10.1038/nsmb.2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hafner M, Lianoglou S, Tuschl T, Betel D. Genome-wide identification of miRNA targets by PAR-CLIP. Methods. 2012;58:94–105. doi:10.1016/j.ymeth.2012.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loeb GB, Khan AA, Canner D, et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell. 2012;48:760–70. doi:10.1016/j.molcel.2012.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin HC, Wani S, Steptoe AL, et al. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol. 2014;15:R51. doi:10.1186/gb-2014-15-3-r51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153:654–65. doi:10.1016/j.cell.2013.03.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Biol. 2004;2, e363. doi:10.1371/journal.pbio.0020363.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1–14. doi:10.1186/gb-2003-5-1-r1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90. doi:10.1186/gb-2010-11-8-r90.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods. 2013;10:253–5. doi:10.1038/nmeth.2341.

    Article  CAS  PubMed  Google Scholar 

  38. Menor M, Ching T, Zhu X, et al. mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome Biol. 2014;15(10):500. doi:10.1186/s13059-014-0500-5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Farh KK-H, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310:1817–21. doi:10.1126/science.1121158.

    Article  CAS  PubMed  Google Scholar 

  40. Lall S, Grün D, Krek A, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006;16:460–71. doi:10.1016/j.cub.2006.01.050.

    Article  CAS  PubMed  Google Scholar 

  41. Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep. 2015;5:8004–12. doi:10.1038/srep08004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reczko M, Maragkakis M, Alexiou P, et al. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28:771–6. doi:10.1093/bioinformatics/bts043.

    Article  CAS  PubMed  Google Scholar 

  43. Marin RM, Sulc M, Vanicek J. Searching the coding region for microRNA targets. RNA. 2013;19:467–74. doi:10.1261/rna.035634.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schnall-Levin M, Zhao Y, Perrimon N, Berger B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci U S A. 2010;107:15751–6. doi:10.1073/pnas.1006172107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. doi:10.1186/1748-7188-6-26.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rehmsmeier M. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17. doi:10.1261/rna.5248604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lagana A, Forte S, Russo F, et al. Prediction of human targets for viral-encoded microRNAs by thermodynamics and empirical constraints. J RNAi Gene Silenc. 2010;6:379–85.

    CAS  Google Scholar 

  48. Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences. Bioinformatics. 2006;22:614–5. doi:10.1093/bioinformatics/btk014.

    Article  CAS  PubMed  Google Scholar 

  49. Long D, Lee R, Williams P, et al. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007;14:287–94. doi:10.1038/nsmb1226.

    Article  CAS  PubMed  Google Scholar 

  50. Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84. doi:10.1038/ng2135.

    Article  CAS  PubMed  Google Scholar 

  51. Vejnar CE, Zdobnov EM. miRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40:11673–83. doi:10.1093/nar/gks901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gan HH, Gunsalus KC. Tertiary structure-based analysis of microRNA-target interactions. RNA. 2013;19:539–51. doi:10.1261/rna.035691.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science. 2012;336:233–7. doi:10.1126/science.1215704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012;336:237–40. doi:10.1126/science.1215691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007;4:1045–9. doi:10.1038/nmeth1130.

    Article  CAS  PubMed  Google Scholar 

  56. Gennarino VA, Sardiello M, Mutarelli M, et al. HOCTAR database: a unique resource for microRNA target prediction. Gene. 2011;480:51–8. doi:10.1016/j.gene.2011.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muniategui A, Nogales-Cadenas R, Vázquez M, et al. Quantification of miRNA-mRNA interactions. PLoS One. 2012;7:e30766. doi:10.1371/journal.pone.0030766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bossel Ben-Moshe N, Avraham R, Kedmi M, et al. Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets. Nucleic Acids Res. 2012;40:10614–27. doi:10.1093/nar/gks841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hammell M, Long D, Zhang L, et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts. Nat Methods. 2008;5:813–9. doi:10.1038/nmeth.1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu C, Mallick B, Long D, et al. CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res. 2013;41:e138. doi:10.1093/nar/gkt435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chou C-H, Lin F-M, Chou M-T, et al. A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics. 2013;14:S2. doi:10.1186/1471-2164-14-S1-S2.

    PubMed  PubMed Central  Google Scholar 

  62. Hsu S-D, Tseng Y-T, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42:D78–85. doi:10.1093/nar/gkt1266.

    Article  CAS  PubMed  Google Scholar 

  63. Anders G, Mackowiak SD, Jens M, et al. doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 2011;40:D180–6. doi:10.1093/nar/gkr1007.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang J-H, Li J-H, Shao P, et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 2010;39:D202–9. doi:10.1093/nar/gkq1056.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li J-H, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42:D92–7. doi:10.1093/nar/gkt1248.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8. doi:10.1016/j.cell.2011.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8. doi:10.1038/nature09144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sen R, Ghosal S, Das S, et al. Competing endogenous RNA: the key to posttranscriptional regulation. Sci World J. 2014;2014:1–6. doi:10.1155/2014/896206.

    Article  Google Scholar 

  69. Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43:D153–9. doi:10.1093/nar/gku1215.

    Article  PubMed  Google Scholar 

  70. Xiao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105–10. doi:10.1093/nar/gkn851.

    Article  CAS  PubMed  Google Scholar 

  71. Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the micronome—using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One. 2011;6:e17429. doi:10.1371/journal.pone.0017429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lagana A, Forte S, Giudice A, et al. MiRo: a miRNA knowledge base. Database. 2009;2009:bap008. doi:10.1093/database/bap008.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cho S, Jang I, Jun Y, et al. miRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2012;41:D252–7. doi:10.1093/nar/gks1168.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dweep H, Sticht C, Pandey P, Gretz N. MiRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 2011;44:839–47. doi:10.1016/j.jbi.2011.05.002.

    Article  CAS  PubMed  Google Scholar 

  75. Guo Z, Maki M, Ding R, et al. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep. 2014;4:1–9. doi:10.1038/srep05150.

    Google Scholar 

  76. Fan X, Kurgan L. Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinformatics. 2014:bbu044. doi: 10.1093/bib/bbu044

  77. Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013;41:W159–64. doi:10.1093/nar/gkt379.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Coronnello C, Hartmaier R, Arora A, et al. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density. PLoS Comput Biol. 2012;8:e1002830. doi:10.1371/journal.pcbi.1002830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–73. doi:10.1093/nar/gkt393.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics. 2007;8:248. doi:10.1186/1471-2105-8-69.

    Article  PubMed Central  Google Scholar 

  81. Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila microRNA targets. PLoS Biol. 2003;1:e60. doi:10.1371/journal.pbio.0000060.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gamazon ER, Im H-K, Duan S, et al. ExprTarget: an integrative approach to predicting human microRNA targets. PLoS One. 2010;5:e13534–8. doi:10.1371/journal.pone.0013534.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ye W, Lv Q, Wong C-KA, et al. The effect of central loops in miRNA: MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One. 2008;3:e1719. doi:10.1371/journal.pone.0001719.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rusinov V, Baev V, Minkov IN, Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 2005;33:W696–700. doi:10.1093/nar/gki364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thadani R, Tammi MT. MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics. 2006;7:S20–9. doi:10.1186/1471-2105-7-S5-S20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 2012;28:2062–3. doi:10.1093/bioinformatics/bts344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008;24:325–32. doi:10.1093/bioinformatics/btm595.

    Article  PubMed  Google Scholar 

  88. Mitra R, Bandyopadhyay S. MultiMiTar: a novel multi objective optimization based miRNA-target prediction method. PLoS One. 2011;6, e24583. doi:10.1371/journal.pone.0024583.s012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marin RM, Vanicek J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2011;39:19–29. doi:10.1093/nar/gkq768.

    Article  CAS  PubMed  Google Scholar 

  90. Marín RM, Vaníček J. Optimal use of conservation and accessibility filters in microRNA target prediction. PLoS One. 2012;7, e32208. doi:10.1371/journal.pone.0032208.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Oğul H, Umu SU, Tuncel YY, Akkaya MS. A probabilistic approach to microRNA-target binding. Biochem Biophys Res Commun. 2011;413:111–5. doi:10.1016/j.bbrc.2011.08.065.

    Article  PubMed  Google Scholar 

  92. Elefant N, Berger A, Shein H, et al. RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res. 2011;39:D188–94. doi:10.1093/nar/gkq1233.

    Article  CAS  PubMed  Google Scholar 

  93. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17. doi:10.1016/j.cell.2006.07.031.

    Article  CAS  PubMed  Google Scholar 

  94. Liu H, Yue D, Chen Y, et al. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics. 2010;11:476. doi:10.1186/1471-2105-11-476.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 2009;25:2625–31. doi:10.1093/bioinformatics/btp503.

    Article  CAS  PubMed  Google Scholar 

  96. Sturm M, Hackenberg M, Langenberger D, Frishman D. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics. 2010;11:292. doi:10.1186/1471-2105-11-292.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Laganà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laganà, A. (2015). Computational Prediction of microRNA Targets. In: Santulli, G. (eds) microRNA: Basic Science. Advances in Experimental Medicine and Biology, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-22380-3_12

Download citation

Publish with us

Policies and ethics