Skip to main content

Abstract

The musculoskeletal system is comprised of three distinct tissue categories: structural mineralized tissues, actuating muscular soft tissues, and connective tissues. Where connective tissues – ligament, tendon and cartilage – meet with bones, a graded interface in mechanical properties occurs that allows the transmission of load without creating stress concentrations that would cause tissue damage. This interface typically occurs over less than 1 mm and contains a three order of magnitude difference in elastic stiffness, in addition to changes in cell type and growth factor concentrations among others. Like all engineered tissues, the replication of these interfaces requires the production of scaffolds that will provide chemical and mechanical cues, resulting in biologically accurate cellular differentiation. For interface tissues however, the scaffold must provide spatially graded chemical and mechanical cues over sub millimetre length scales. Naturally, this complicates the manufacture of the scaffolds and every stage of their subsequent cell seeding and growth, as each region has different optimal conditions. Given the higher degree of difficulty associated with replicating interface tissues compared to surrounding homogeneous tissues, it is likely that the development of complex musculoskeletal tissue systems will continue to be limited by the engineering of connective tissues interfaces with bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AAOS (2014) Anterior cruciate ligament injuries. http://orthoinfo.aaos.org/topic.cfm?topic=a00549

  • Abraham AC, Haut Donahue TL (2013) From meniscus to bone: a quantitative evaluation of structure and function of the human meniscal attachments. Acta Biomater 9:6322–6329

    PubMed Central  PubMed  Google Scholar 

  • Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1:257–265

    CAS  PubMed  Google Scholar 

  • Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    PubMed Central  PubMed  Google Scholar 

  • Armitage OE, Oyen ML (2015) Indentation of tissue interfaces (in preparation)

    Google Scholar 

  • Asthagiri AR, Nelson CM, Horwitz AF, Lauffenburger DA (1999) Quantitative relationship among integrin-ligand binding, adhesion, and signaling via focal adhesion kinase and extracellular signal-regulated kinase 2. J Biol Chem 274:27119–27127

    CAS  PubMed  Google Scholar 

  • Barrère F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 1:317–332

    PubMed Central  PubMed  Google Scholar 

  • Bembey A, Oyen M, Bushby A, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Phil Mag 86:5691–5703

    CAS  Google Scholar 

  • Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat 193:481–494

    PubMed Central  PubMed  Google Scholar 

  • Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhardwaj T, Pilliar RM, Grynpas MD, Kandel RA (2001) Effect of material geometry on cartilagenous tissue formation in vitro. J Biomed Mater Res 57:190–199

    CAS  PubMed  Google Scholar 

  • Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H (2008) Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9

    PubMed  Google Scholar 

  • Buxboim A, Rajagopal K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116

    PubMed Central  PubMed  Google Scholar 

  • Cai S, Xu H, Jiang Q, Yang Y (2013) 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues. Langmuir 29:2311–2318

    CAS  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  PubMed  Google Scholar 

  • Chan BP, Hui TY, Wong MY, Yip KHK, Chan GCF (2010) Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Eng Part C Methods 16:225–235

    CAS  PubMed  Google Scholar 

  • Chen CS (2008) Mechanotransduction – a field pulling together? J Cell Sci 121:3285–3292

    CAS  PubMed  Google Scholar 

  • Chen C-H, Liu H-W, Tsai C-L, Yu C-M, Lin I-H, Hsiue G-H (2008) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36:461–473

    PubMed  Google Scholar 

  • Cheng H, Luk KDK, Cheung KMC, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 32:1526–1535

    CAS  PubMed  Google Scholar 

  • Chung EJ, Sugimoto MJ, Koh JL, Ameer GA (2014) A biodegradable tri-component graft for anterior cruciate ligament reconstruction. J Tissue Eng Regener Med. doi:10.1002/term.1966

    Google Scholar 

  • Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532

    CAS  PubMed  Google Scholar 

  • Cooper JA, Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT (2007) Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A 104:3049–3054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS (2010) Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38:2167–2182

    PubMed Central  PubMed  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    CAS  PubMed  Google Scholar 

  • Evans EJ, Benjamin M, Pemberton DJ (1990) Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat 171:155–162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fennessey S, Farris R (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer (Guildf) 45:4217–4255

    CAS  Google Scholar 

  • Ferguson VL (2009) Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior. J Mech Behav Biomed Mater 2:364–374

    CAS  PubMed  Google Scholar 

  • Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202

    PubMed Central  PubMed  Google Scholar 

  • Freeman JW, Woods MD, Laurencin CT (2007) Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech 40:2029–2036

    PubMed Central  PubMed  Google Scholar 

  • Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, Silva MJ, Thomopoulos S (2006) Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 24:541–550

    CAS  PubMed  Google Scholar 

  • Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97:976–985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL (2006) Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2:313–320

    PubMed  Google Scholar 

  • Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanovich A, Schoeberl T, Klaushofer K, Fratzl P (2005) Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J Struct Biol 149:138–148

    CAS  PubMed  Google Scholar 

  • Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010a) Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold. J Biomed Mater Res A 92:1066–1077

    PubMed  Google Scholar 

  • Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010b) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92:1078–1093

    PubMed  Google Scholar 

  • Hauch KN, Oyen ML, Odegard GM, Haut Donahue TL (2009) Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater 2:339–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haugh MG, Murphy CM, O’Brien FJ (2010) Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng Part C Methods 16:887–894

    CAS  PubMed  Google Scholar 

  • He J, Du Y, Villa-Uribe JL, Hwang C, Li D, Khademhosseini A (2010) Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv Funct Mater 20:131–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212

    CAS  PubMed  Google Scholar 

  • Hunziker EB, Quinn TM, Häuselmann HJ (2002) Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil 10:564–572

    CAS  PubMed  Google Scholar 

  • Ifkovits JL, Sundararaghavan HG, Burdick JA (2009) Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture. J Vis Exp 32:629–629

    Google Scholar 

  • Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338:762–770

    CAS  PubMed  Google Scholar 

  • Jiang J, Tang A, Ateshian GA, Edward Guo X, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38:2183–2196

    PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    CAS  PubMed  Google Scholar 

  • Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A 18:533–545

    CAS  Google Scholar 

  • Langholz O, Röckel D, Mauch C, Kozlowska E, Bank I, Krieg T, Eckes B (1995) Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol 131:1903–1915

    CAS  PubMed  Google Scholar 

  • LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88

    CAS  PubMed  Google Scholar 

  • Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9:2763–2768

    PubMed Central  PubMed  Google Scholar 

  • Liu Y, Ramanath HS, Wang DA (2008) Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol 26:201–209

    CAS  PubMed  Google Scholar 

  • Logsdon C, Simeone D, Binkley C, Arumugam T, Greenson J, Giordano T, Misek D, Kuick R, Hanash S (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    CAS  PubMed  Google Scholar 

  • Lowery JL, Datta N, Rutledge GC (2010) Biomaterials effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly (3 -caprolactone) fibrous mats. Biomaterials 31:491–504

    CAS  PubMed  Google Scholar 

  • Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26:4805–4816

    CAS  PubMed  Google Scholar 

  • Lühmann T, Hall H (2009) Cell guidance by 3D-gradients in hydrogel matrices: importance for biomedical applications. Materials (Basel) 2:1058–1083

    Google Scholar 

  • Lui P, Zhang P, Chan K, Qin L (2010) Biology and augmentation of tendon-bone insertion repair. J Orthop Surg Res 5:59–63

    PubMed Central  PubMed  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    CAS  PubMed  Google Scholar 

  • Lynn AK, Best SM, Cameron RE, Harley BA, Yannas IV, Gibson LJ, Bonfield W (2010) Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J Biomed Mater Res A 92:1057–1065

    PubMed  Google Scholar 

  • Ma M, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21:5549–5554

    CAS  PubMed  Google Scholar 

  • Macchetta A, Turner IG, Bowen CR (2009) Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater 5:1319–1327

    CAS  PubMed  Google Scholar 

  • Mahadik BP, Wheeler TD, Skertich LJ, Kenis PJ, Harley B (2014) Microfluidic generation of gradient hydrogels to modulate hematopoietic stem cell culture environment. Adv Healthc Mater 3:449–458

    CAS  PubMed  Google Scholar 

  • Maquet V, Blacher S, Pirard R, Pirard J-P, Vyakarnam MN, Jérôme R (2003) Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy. J Biomed Mater Res A 66:199–213

    CAS  PubMed  Google Scholar 

  • Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL-Y, Fu FH, Huard J (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 84:1123–1131

    PubMed  Google Scholar 

  • Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114:1089–1100

    CAS  PubMed  Google Scholar 

  • McKee CT, Last JA, Russell P, Murphy CJ (2011) Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng Part B Rev 17:155–164

    PubMed Central  PubMed  Google Scholar 

  • Moffat KL, Sun W-HS, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu HH (2008) Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 105:7947–7952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molloy T, Wang Y, Murrell GAC (2003) The roles of growth factors in tendon and ligament healing. Sport Med 33:381–394

    Google Scholar 

  • Moutos FT, Guilak F (2008) Composite scaffolds for cartilage tissue engineering. Biorheology 45:501–512

    PubMed Central  PubMed  Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    CAS  PubMed  Google Scholar 

  • Murphy C, Haugh M, O’Brien F (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466

    CAS  PubMed  Google Scholar 

  • Mutsuzaki H, Sakane M, Nakajima H, Ito A, Hattori S, Miyanaga Y, Ochiai N, Tanaka J (2004) Calcium-phosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion. J Biomed Mater Res A 70:319–327

    PubMed  Google Scholar 

  • Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18:769–776

    CAS  PubMed  Google Scholar 

  • Niederauer GG, Slivka MA, Leatherbury NC, Korvick DL, Harroff HH, Ehler WC, Dunn CJ, Kieswetter K (2000) Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 21:2561–2574

    CAS  PubMed  Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Google Scholar 

  • OECD (2013) Hip and knee replacement. Health at a glance 2013: OECD indicators. Paris: OECD Publishing

    Google Scholar 

  • Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59:44–59

    CAS  Google Scholar 

  • Oyen ML, Ko C-C (2008) Indentation variability of natural nanocomposite materials. J Mater Res 23:760–767

    CAS  Google Scholar 

  • Oyen ML, Ferguson VL, Bembey AK, Bushby AJ, Boyde A (2008) Composite bounds on the elastic modulus of bone. J Biomech 41:2585–2588

    PubMed  Google Scholar 

  • Paxton JZ, Donnelly K, Keatch RP, Baar K (2009) Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A 15:1201–1209

    CAS  PubMed  Google Scholar 

  • Phillips JE, Burns KL, Le Doux JM, Guldberg RE, García AJ (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci U S A 105:12170–12175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poologasundarampillai G, Yu B, Jones JR, Kasuga T (2011) Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter 7:10241–10251

    CAS  Google Scholar 

  • Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22

    CAS  PubMed  Google Scholar 

  • Ripamonti U, Crooks J, Khoali L, Roden L (2009) The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials 30:1428–1439

    CAS  PubMed  Google Scholar 

  • Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg 75:1795–1803

    CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  PubMed  Google Scholar 

  • Saha K, Pollock JF, Schaffer DV, Healy KE (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11:381–387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJB, Roberts CJ, Williams PM, Shakesheff KM (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61:212–217

    CAS  PubMed  Google Scholar 

  • Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88:899–911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarvestani AS (2010) Cell adhesion on ligand gradient substrates: a thermodynamic study. Biotechnol Bioeng 105:172–183

    CAS  PubMed  Google Scholar 

  • Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21:2599–2606

    CAS  PubMed  Google Scholar 

  • Song JH, Kim HE, Kim HW (2008) Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19:2925–2932

    CAS  PubMed  Google Scholar 

  • Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH (2006a) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12:3497–3508

    CAS  PubMed  Google Scholar 

  • Spalazzi JP, Gallina J, Fung-kee-fung SD, Konofagou EE, Lu HH (2006b) Elastographic Imaging of strain distribution in the anterior cruciate ligament and at the ligament – bone insertions. J Orthop Res 24:2001–2010

    PubMed  Google Scholar 

  • Spalazzi JP, Boskey AL, Lu HH (2007) Region-dependent variations in matrix collagen and mineral distribution across the femoral and tibial anterior cruciate ligament-to-bone insertion sites. Trans Orthop Res Soc 32:891

    Google Scholar 

  • Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86:1–12

    PubMed  Google Scholar 

  • Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    CAS  PubMed  Google Scholar 

  • Sundararaghavan HG, Burdick JA (2011) Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 12:2344–2350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suresh S, Mortenson A (1998) Fundamentals of functionally graded materials: processing and thermomechanical behaviour of graded metals and metal-ceramic composites. IOM Communications, London

    Google Scholar 

  • Thomopoulos S, Birman V, Genin G (2013) Structural interfaces and attachments in biology. New York: Springer-Verlag

    Google Scholar 

  • Tien YC, Chih TT, Lin JHC, Ju CP, Lin SD (2004) Augmentation of tendon-bone healing by the use of calcium-phosphate cement. J Bone Joint Surg Br 86:1072–1076

    CAS  PubMed  Google Scholar 

  • Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y, Oyen ML, Cohen Stuart MA, Boehm H, Li B, Vogel V, Spatz JP, Watt FM, Huck WTS (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649

    CAS  PubMed  Google Scholar 

  • United States Bone & Joint Initiative (2011) The burden of musculoskeletal diseases in the United States, 2nd edn. American Academy of Orthopedic Surgeons, Rosemont

    Google Scholar 

  • Walsh W (2007) Repair and regeneration of ligaments, tendons, and joint capsule. New York: Springer

    Google Scholar 

  • Wang INE, Mitroo S, Chen FH, Lu HH, Doty SB (2006) Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res 24:1745–1755

    CAS  PubMed  Google Scholar 

  • Wang I, Shan J, Choi R, Oh S, Kepler C, Chen F, Lu HH (2007) Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25:1609–1620

    CAS  PubMed  Google Scholar 

  • Weisgerber DW, Kelkhoff DO, Caliari SR, Harley BAC (2013) The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties. J Mech Behav Biomed Mater 28:26–36

    PubMed Central  CAS  PubMed  Google Scholar 

  • Whang K, Healy K (2002) Processing of polymer scaffolds: freeze – drying. In: Atala A, Anza RP (eds) Methods of tissue engineering. Houston: Academic Press, pp 697–702

    Google Scholar 

  • Wopenka B, Kent A, Pasteris J (2008) The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue. Appl Spectrosc 62:1285–1294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55:151–157

    CAS  PubMed  Google Scholar 

  • Yahia H, Newman N (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg 52:664–674

    Google Scholar 

  • Yamaguchi K (2011) New guideline on rotator cuff problems. AAOS Now

    Google Scholar 

  • Yilgor C, Yilgor Huri P, Huri G (2012) Tissue engineering strategies in ligament regeneration. Stem Cells Int 2012:374676

    PubMed Central  PubMed  Google Scholar 

  • Yoder C, Pasteris J, Worcester K, Schermerhorn D, Sternlieb M, Goldenberg J, Wilt Z (2012) Dehydration and rehydration of carbonated fluor- and hydroxylapatite. Minerals 2:100–117

    CAS  Google Scholar 

  • Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, De Groot K (1998) Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med 9:723–726

    CAS  PubMed  Google Scholar 

  • Zandstra PW, Lauffenburger DA, Eaves CJ (2000) A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood 96:1215–1222

    CAS  PubMed  Google Scholar 

  • Zhang Y (2012) Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci 9:353–360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang D, Chang J (2007) Patterning of electrospun fibers using electroconductive templates. Adv Mater 19:3662–3667

    Google Scholar 

  • Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141:208–217

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Armitage, O.E., Oyen, M.L. (2015). Hard-Soft Tissue Interface Engineering. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_11

Download citation

Publish with us

Policies and ethics