Skip to main content

Linear Integer Arithmetic Revisited

  • Conference paper
  • First Online:
Automated Deduction - CADE-25 (CADE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9195))

Included in the following conference series:

Abstract

We consider feasibility of linear integer programs in the context of verification systems such as SMT solvers or theorem provers. Although satisfiability of linear integer programs is decidable, many state-of-the-art solvers neglect termination in favor of efficiency. It is challenging to design a solver that is both terminating and practically efficient. Recent work by Jovanović and de Moura constitutes an important step into this direction. Their algorithm CUTSAT is sound, but does not terminate, in general. In this paper we extend their CUTSAT algorithm by refined inference rules, a new type of conflicting core, and a dedicated rule application strategy. This leads to our algorithm CUTSAT++, which guarantees termination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The restrictions to maximal variables in the definition of conflicting cores and to the Solve-Div rule were both confirmed as missing but necessary in a private communication with Jovanović.

  2. 2.

    As recommended in [8], CUTSAT++ uses the same slack variable for all Slack-Intro applications.

References

  1. Barrett, C.W., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. ArXiv e-prints, abs/1503.02948 (2015)

    Google Scholar 

  3. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) 1971 Proceedings of the Seventh Annual Machine Intelligence Workshop, Edinburgh. Machine Intelligence, vol. 7, pp. 91–99. Edinburgh University Press (1972)

    Google Scholar 

  4. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Math. Comput. Sci. 6(4), 409–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer, M.J., Rabin, M.: Super-exponential complexity of Presburger arithmetic. SIAM-AMS Proc. 7, 27–41 (1974)

    MathSciNet  Google Scholar 

  7. Griggio, A.: A practical approach to satisability modulo linear integer arithmetic. JSAT 8(1/2), 1–27 (2012)

    MathSciNet  Google Scholar 

  8. Jovanović, D., de Moura, L.: Cutting to the chase. J. Autom. Reasoning 51(1), 79–108 (2013)

    Article  Google Scholar 

  9. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958–2008. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  10. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of the integers. A uniform generalization of Presburger arithmetic. Appl. Algebra Eng. Commun. Comput. 18(6), 545–574 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4), 765–768 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen. welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du premier congres de Mathematiciens des Pays Slaves, pp. 92–101. Warsaw, Poland (1929)

    Google Scholar 

  13. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb. Comput. 10(5), 395–403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the German Transregional Collaborative Research Center SFB/TR 14 AVACS and by the ANR/DFG project STU 483/2-1 SMArT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bromberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bromberger, M., Sturm, T., Weidenbach, C. (2015). Linear Integer Arithmetic Revisited. In: Felty, A., Middeldorp, A. (eds) Automated Deduction - CADE-25. CADE 2015. Lecture Notes in Computer Science(), vol 9195. Springer, Cham. https://doi.org/10.1007/978-3-319-21401-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21401-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21400-9

  • Online ISBN: 978-3-319-21401-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics