Skip to main content

Nuclear Spin Catalysis: From Molecular Liquids to Biomolecular Nanoreactors

  • Conference paper
  • First Online:
Physics of Liquid Matter: Modern Problems

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 171))

Abstract

All chemical reactions obey the law of conservation of spin angular momentum (‘spin’): any reaction is only allowed when the total spin of reactants is identical to the total spin of products. Correspondingly, free-radical reactions in molecular liquids can be accelerated by changing in electron spin of the reactants via magnetic fields of magnetic nuclei, the so-called “magnetic isotope effect” (MIE). In molecular liquids, the magnetic isotope effects have been discovered for a number of magnetic isotopes, among them H–D, 13C, 17O, 29Si, 33S, 73Ge, 117,119Sn, 199,201Hg, and 235U. Recently MIE has been discovered in living cells. It was revealed that the rate constant of post-radiation recovery of yeast cells is twice higher for the cells enriched with the magnetic 25Mg when compared to the cells with the nonmagnetic 24Mg. Furthermore, it has been revealed that 25Mg essentially accelerates, 2–2.5 times by comparison to the spin-less 24Mg and 26Mg, the reaction of ATP hydrolysis catalyzed by myosin, the enzyme isolated from muscle cells. Although detailed mechanisms of the ability of biomolecular nanoreactors to perceive the nuclear magnetism require further investigations, the recent developments in this new field highlight promising venues for future research of the magnetic isotope effects (‘nuclear spin catalysis’) in molecular liquids and biopolymer nanoreactors with possible application of the stable magnetic isotopes for control over efficiency and reliability of molecular nanoreactors in engineering and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MIE:

Magnetic isotope effect

ATP:

Adenosine 5’-triphosphate

ADP:

Adenosine 5’-diphosphate

Pi :

Inorganic phosphate

References

  1. L.D. Landau, E.M. Lifshitz, Theoretical Physics. vol. 3. Quantum Mechanics, vol. 3 (Nauka, Moscow, Russia, 1989)

    Google Scholar 

  2. A.L. Buchachenko, R.Z. Sagdeev, K.M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, Russia, 1978)

    Google Scholar 

  3. Y.B. Zeldovich, A.L. Buchachenko, E.L. Frankevich, Sov. Phys. Usp. 155, 3 (1988)

    Article  Google Scholar 

  4. B. Brocklenhurst, Chem. Soc. Rev. 31, 301 (2002)

    Article  Google Scholar 

  5. A.L. Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry (Nova Science Publishing, New York, 2009)

    Google Scholar 

  6. V.K. Koltover, in Nanotechnology 2010, (Nano Science and Technology Inst, Anaheim, 2010), vol. 3, pp. 475–477

    Google Scholar 

  7. V.K. Koltover, in Biomedicine, ed. by C. Lin (InTech-Europe, Rijeka, 2012), pp. 105–122

    Google Scholar 

  8. P.J. Hore, Proc. Nat. Acad. Sci. USA 109, 1357 (2012)

    Article  ADS  Google Scholar 

  9. A.L. Buchachenko, J. Phys. Chem. B. 117, 2231 (2013)

    Article  Google Scholar 

  10. D. Kaplan, I. Solomon, N.F. Mott, J. de Physique Lett. 39, 5 (1978)

    Article  Google Scholar 

  11. D.M. Grant, R.K. Harris (eds.), Encyclopedia of Nuclear Magnetic Resonance (Wiley, Chichester, 1996)

    Google Scholar 

  12. L. Stryer, Biochemistry (Freeman, New York, 2002)

    Google Scholar 

  13. D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry (Freeman, New York, 2008)

    Google Scholar 

  14. D.M. Grodzinsky, T.A. Evstyukhina, V.K. Koltover, V.G. Korolev, Y.A. Kutlakhmedov, Reports of National Academy of Sciences of Ukraine. No. 12, 153 (2011)

    Google Scholar 

  15. V.K. Koltover, V.G. Korolev, Y.A. Kutlakhmedov, Ionizing Radiation: Applications, Sources and Biological Effects (Nova Science Publishing, New York, 2012), pp. 117–128

    Google Scholar 

  16. V.K. Koltover, U.G. Shevchenko, L.V. Avdeeva, E.A. Royba, V.L. Berdinsky, E.A. Kudryashova, Dokl. Biochem. Biophys. 442, 12 (2012)

    Article  Google Scholar 

  17. V.K. Koltover, Biophysics 58, 187 (2013)

    Article  Google Scholar 

  18. A.L. Buchachenko, D.A. Kouznetsov, N.N. Breslavskaya, Chem. Rev. 112, 2042 (2012)

    Article  Google Scholar 

  19. D. Crotty, G. Silkstone, S. Poddar, R. Ranson, A. Prina-Mello, M.T. Wilson, J.M.D. Coey, Proc. Nat. Acad. Sci. USA 109, 1437 (2012)

    Article  ADS  Google Scholar 

  20. F.A. Kiani, S. Fischer, Proc. Natl. Acad. Sci. U.S.A. 111, 2947 (2014)

    Article  ADS  Google Scholar 

  21. V.K. Koltover, R.D. Labyntseva, A.A. Lul’ko, V.K. Karandashev, S.A. Kosterin, Reports of the National Academy of Sciences of Ukraine. No. 1, 163 (2014)

    Google Scholar 

  22. V.K. Koltover, L.M. Reichman, A.A. Yasajtis, L.A. Blumenfeld, Biochim. et Biophys. Acta. 234, 296 (1971)

    Google Scholar 

  23. M.V. Volkenstein, General Biophysics (Acad. Press, New York, 1983)

    Google Scholar 

  24. M.V. Badylevich, V.V. Kveder, V.I. Orlov, Y.A. Osipyan, Phys. Stat. Sol. 2(6), 1869 (2005)

    Article  Google Scholar 

  25. A.S. Davydov, Sov. Phys. Usp. 25, 898 (1982)

    Article  ADS  Google Scholar 

  26. V.I. Tikhonov, A.A. Volkov, Science 296, 2363 (2002)

    Article  Google Scholar 

  27. Y. Scolnik, I. Portnaya, U. Cogan, S. Tal, R. Haimovitz, M. Fridkin, A.C. Elitzur, D.W. Deamer, M. Shinitzky, Phys. Chem.—Chem. Phys. 8(3), 333 (2006)

    Article  Google Scholar 

  28. V.V. Novikov, I.M. Sheiman, E.E. Fesenko, Biophysics 47, 125 (2002)

    Google Scholar 

  29. V.N. Binhi, V.A. Milayev, D.S. Chernavskii, A.B. Rubin, Biophysics 51, 553 (2006)

    Google Scholar 

  30. S.E. Snoll, Biophysics 58, 265 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Magnesium oxides, 24MgO, 25MgO and 26MgO with isotope enrichment no less than 99.8, 98.2, and 81.0 atomic percent, were purchased from Russian atomic industry. From these oxides, the relevant magnesium chloride or sulphate solutions, correspondingly, were prepared accordingly to the standard procedures. I am thankful to Dr. Vasilii K. Karandashev, head of Analytical Center, Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, for measurements of the isotope contents and element analysis of solutions using ICP-MS (mass spectrometry with inductively coupled plasma) and ICP-AES (atomic emission spectrometry with inductively coupled plasma). This work was presented on 6th International Conference on Physics of Liquid Matter: Modern Problems (PLMMP-2014), Kyiv, Ukraine, May 23-27, 2014. I am deeply grateful to academician Leonid Bulavin and Professor Nikolai Lebovka who kindly invited me to give my presentation on this conference, within the precincts of Physics Department of Kyiv National University, my Alma Mater. Additionally, this manuscript benefited from the remarks of an anonymous reviewer. The Funding was provided by Russian Foundation for Basic Research (RFBR), project no. 14-04-00593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly K. Koltover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Koltover, V.K. (2015). Nuclear Spin Catalysis: From Molecular Liquids to Biomolecular Nanoreactors. In: Bulavin, L., Lebovka, N. (eds) Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-20875-6_14

Download citation

Publish with us

Policies and ethics