Skip to main content

Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

  • Chapter
Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 57))

Abstract

Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates.

An immune system is characterized by two linked properties: a somatic learning process to make a self–nonself discrimination and a mechanism for determining the class of the response that optimally rids the target

Melvin Cohn (Cohn 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The origin of the species, Chap. 5, Laws of Variation

References

  • Alugupalli KR, Akira S, Lien E, Leong JM (2007) MyD88- and Bruton’s tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. J Immunol 178:3740–3749

    Article  CAS  PubMed  Google Scholar 

  • Arnesen KR, Mikkelsen H, Schrøder MB, Lund V (2010) Impact of reattaching various Aeromonas salmonicida A-layer proteins on vaccine efficacy in Atlantic cod (Gadus morhua). Vaccine 28:4703–4708

    Google Scholar 

  • Austbø L, Bergva Aas I, König M et al (2014) Transcriptional response of immune genes in gills and the interbranchial lymphoid tissue of Atlantic salmon challenged with infectious salmon anaemia virus. Dev Comp Immunol 45:107–114

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Wang T, Guo Y et al (2010) The immunoglobulin gene loci in the teleost Gasterosteus aculeatus. Fish Shellfish Immunol 28:40–48

    Google Scholar 

  • Barreto VM, Magor BG (2011) Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol 35:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Barreto V, Meo T, Cumano A (2001) Mice triallelic for the Ig heavy chain locus: implications for VHDJH recombination. J Immunol 166:5638–5645

    Article  CAS  PubMed  Google Scholar 

  • Barreto VM, Pan-Hammarstrom Q, Zhao Y et al (2005) AID from bony fish catalyses call switch recombination. J Exp Med 202:733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Hamo R, Efroni S (2011) The whole-organism heavy chain B cell repertoire from Zebrafish self-organizes into distinct network features. BMC Syst Biol 5:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernard D, Six A, Rigottier-Gois L et al (2006) Phenotypic and functional similarity of gut intraepithelial and systemic T cells in a teleost fish. J Immunol 176:3942–3949

    Article  CAS  PubMed  Google Scholar 

  • Boudinot P, Boubekeur S, Benmansour A (2001) Rhabdovirus infection induces public and private T cell responses in teleost fish. J Immunol 167:6202–6209

    Article  CAS  PubMed  Google Scholar 

  • Boudinot P, Boubekeur S, Benmansour A (2002) Primary structure and complementarity-determining region (CDR) 3 spectratyping of rainbow trout TCRbeta transcripts identify ten Vbeta families with Vbeta6 displaying unusual CDR2 and differently spliced forms. J Immunol 169:6244–6252

    Article  CAS  PubMed  Google Scholar 

  • Boudinot P, Bernard D, Boubekeur S et al (2004) The glycoprotein of a fish rhabdovirus profiles the virus-specific T-cell repertoire in rainbow trout. J Gen Virol 85:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Brodeur PH, Wortis HH (1980) Regulation of thymus-independent responses: unresponsiveness to a second challenge of TNP-Ficoll is mediated by hapten-specific antibodies. J Immunol 125:1499–1505

    CAS  PubMed  Google Scholar 

  • Burnet FM (1957) A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust J Sci 20:67–69

    Google Scholar 

  • Castro R, Jouneau L, Pham H-P et al (2013) Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PLoS Pathog 9, e1003098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohn M (1994) The wisdom of hindsight. Annu Rev Immunol 12:1–62

    Article  CAS  PubMed  Google Scholar 

  • Costa G, Danz H, Kataria P, Bromage E (2012) A holistic view of the dynamisms of teleost IgM: a case study of Streptococcus iniae vaccinated rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 36:298–305

    Google Scholar 

  • Daggfeldt A, Bengtén E, Pilström L (1993) A cluster type organization of the loci of the immunoglobulin light chain in Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss Walbaum) indicated by nucleotide sequences of cDNAs and hybridization analysis. Immunogenetics 38:199–209

    Google Scholar 

  • Danilova N, Bussmann J, Jekosch K, Steiner LA (2005) The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6:295–302

    Article  CAS  PubMed  Google Scholar 

  • Das S, Hirano M, Tako R et al (2012) Evolutionary genomics of immunoglobulin-encoding Loci in vertebrates. Curr Genomics 13:95–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Togni P, Goellner J, Ruddle NH et al (1994) Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707

    Article  PubMed  Google Scholar 

  • Defrance T, Taillardet M, Genestier L (2011) T cell-independent B cell memory. Curr Opin Immunol 23:330–336

    Article  CAS  PubMed  Google Scholar 

  • DeKosky BJ, Ippolito GC, Deschner RP et al (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat Biotechnol 31:166–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz M, Velez J, Singh M et al (1999) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 11:825–833

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, Flajnik MF, Klinman N (2001) Evolution and the molecular basis of somatic hypermutation of antigen receptor genes. Philos Trans R Soc Lond B Biol Sci 356:67–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dijkstra JM, Grimholt U, Leong J et al (2013) Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13:260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dooley H, Stanfield RL, Brady RA, Flajnik MF (2006) First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci USA 103:1846–1851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du Pasquier L, Hsu E (1983) Immunoglobulin expression in diploid and polyploid interspecies hybrid of Xenopus: evidence for allelic exclusion. Eur J Immunol 13:585–590

    Google Scholar 

  • Dunon D, Schwager J, Dangy JP et al (1994) T cell migration during development: homing is not related to TCR V beta 1 repertoire selection. EMBO J 13:808–815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eason DD, Litman RT, Luer CA et al (2004) Expression of individual immunoglobulin genes occurs in an unusual system consisting of multiple independent loci. Eur J Immunol 34:2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Espelid S, Rødseth O, Jørgensen T et al (1991) Vaccination experiments and studies of the humoral immune responses in cod, Gadus morhuaL., to four strains of monoclonal-defined Vibrio anguillarum. J Fish Dis 14:185–197

    Google Scholar 

  • Findly RC, Zhao X, Noe J et al (2013) B cell memory following infection and challenge of channel catfish with Ichthyophthirius multifiliis. Dev Comp Immunol 39:302–311

    Article  PubMed  CAS  Google Scholar 

  • Flajnik M, Du Pasquier L (2013) Evolution of the immune system. In: Paul W (ed) Fundamental Immunology, 7th edn. Wolters Kluwer & Lippincott Williams & Wilkins, New York, pp 67–128

    Google Scholar 

  • Francés V, Pandrau-Garcia D, Guret C et al (1994) A surrogate 15 kDa JC kappa protein is expressed in combination with mu heavy chain by human B cell precursors. EMBO J 13:5937–5943

    PubMed Central  PubMed  Google Scholar 

  • Gambón-Deza F, Sánchez-Espinel C, Magadán-Mompó S (2010) Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes. Dev Comp Immunol 34:114–122

    Google Scholar 

  • Gross GG, Schwartz VL, Stevens C et al (1994) Distribution of dominant T cell receptor beta chains in human intestinal mucosa. J Exp Med 180:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsdóttir S, Magnadóttir B, Björnsdóttir B et al (2009) Specific and natural antibody response of cod juveniles vaccinated against Vibrio anguillarum. Fish Shellfish Immunol 26:619–624

    Google Scholar 

  • Haire RN, Rast JP, Litman RT, Litman GW (2000) Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor alpha in zebrafish. Immunogenetics 51:915–923

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Landis E, Phillips R (2005) Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci 102:6919–6924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haugarvoll E, Bjerkås I, Nowak BF et al (2008) Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J Anat 213(2):202–209

    Article  PubMed Central  PubMed  Google Scholar 

  • Helfman G, Collette B, Facey D, Bowen B (2010) The diversity of fishes, 2nd edn. Wiley Blackwell, Hoboken

    Google Scholar 

  • Herrin BR, Cooper MD (2010) Alternative adaptive immunity in jawless vertebrates. J Immunol 185:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Das S, Guo P, Cooper MD (2011) The evolution of adaptive immunity in vertebrates. Adv Immunol 109:125–157

    Article  CAS  PubMed  Google Scholar 

  • Hofmann J, Greter M, Du Pasquier L, Becher B (2010) B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol 31:144–153

    Article  CAS  PubMed  Google Scholar 

  • Holtmeier W, Hennemann A, Caspary WF (2000) IgA and IgM V(H) repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 119:1253–1266

    Article  CAS  PubMed  Google Scholar 

  • Hsu E (2009) V(D)J recombination: of mice and sharks. Adv Exp Med Biol 650:166–179

    Article  CAS  PubMed  Google Scholar 

  • Hsu E, Criscitiello MF (2006) Diverse Immunoglobulin Light Chain Organizations in Fish Retain Potential to Revise B Cell Receptor Specificities. J Immunol 177(4):2452–2462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu E, Pulham N, Rumfelt LL, Flajnik MF (2006) The plasticity of immunoglobulin gene systems in evolution. Immunol Rev 210:8–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huetz F, Carlsson L, Tornberg UC, Holmberg D (1993) V-region directed selection in differentiating B lymphocytes. EMBO J 12:1819–1826

    PubMed Central  CAS  PubMed  Google Scholar 

  • Israelsson O, Petersson A, Bengtén E et al (1991) Immunoglobulin concentration in Atlantic cod, Gadus morhua L., serum and -reactivity between anti-cod-antibodies and immunoglobulins from other species. J Fish Biol 39:265–278

    Google Scholar 

  • Jerne NK (1955) The natural selection theory of antibody formation. Proc Natl Acad Sci USA 41:849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jerne N (1971) What precedes clonal selection? Ontogeny of acquired immunity. In Proceedings of CIBA Foundation Symposium, CIBA, Amsterdam, pp 1–15

    Google Scholar 

  • Jhunjhunwala S, van Zelm MC, Peak MM, Murre C (2009) Chromatin architecture and the generation of antigen receptor diversity. Cell 138:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang N, Weinstein JA, Penland L et al (2011) Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci USA 108:5348–5353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaattari SL, Zhang HL, Khor IW et al (2002) Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev Comp Immunol 26:191–200

    Article  CAS  PubMed  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  CAS  PubMed  Google Scholar 

  • Koppang EO, Fischer U, Moore L et al (2010) Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J Anat 217:728–739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurath G, Garver KA, Corbeil S et al (2006) Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine 24:345–354

    Article  CAS  PubMed  Google Scholar 

  • Lathrop SK, Bloom SM, Rao SM et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindner C, Wahl B, Föhse L et al (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209:365–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma C, Ye J, Kaattari SL (2013) Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. Eur J Immunol 43:360–370

    Article  CAS  PubMed  Google Scholar 

  • Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F (2011) Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evol Biol 11:165

    Google Scholar 

  • Magadán-Mompó S, Zimmerman AM, Sánchez-Espinel C, Gambón-Deza F (2013) Immunoglobulin light chains in medaka (Oryzias latipes). Immunogenetics 65:387–396

    Google Scholar 

  • Magnadottir B, Jonsdottir H, Helgason S et al (1999) Humoral immune parameters in Atlantic cod (Gadus morhua L.), II: the effects of size and gender under different environmental conditions. Comp Biochem Physiol 122:181–188

    Google Scholar 

  • Malecek K, Lee V, Feng W et al (2008) Immunoglobulin heavy chain exclusion in the shark. PLoS Biol 6, e157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Malmstrøm M, Jentoft S, Gregers TF, Jakobsen KS (2013) Unraveling the evolution of the Atlantic cod’s (Gadus morhua L.) alternative immune strategy. PLoS One 8, e74004

    Google Scholar 

  • Marianes AE, Zimmerman M, Zimmerman AM (2011) Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology 132:240–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mårtensson IL, Keenan RA, Licence S (2007) The pre-B-cell receptor. Curr Opin Immunol 19:137–142

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Lo SFF, Carruthers CJJ et al (1996) Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382:462–466

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Rahman A (1998) What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunol Rev 166:177–186

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen H, Lund V, Larsen R, Seppola M (2011) Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol 30:330–339

    Google Scholar 

  • Miller NW, Clem LW (1984) Microsystem for in vitro primary and secondary immunization of channel catfish (Ictalurus punctatus) leukocytes with hapten-carrier conjugates. J Immunol Methods 72:367–379

    Google Scholar 

  • Miller NW, Sizemore RC, Clem LW (1985) Phylogeny of lymphocyte heterogeneity: the cellular requirements for in vitro antibody responses of channel catfish leukocytes. J Immunol 134:2884–2888

    CAS  PubMed  Google Scholar 

  • Mora T, Walczak AM, Bialek W, Callan CG (2010) Maximum entropy models for antibody diversity. Proc Natl Acad Sci USA 107:5405–5410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakanishi T, Toda H, Shibasaki Y, Somamoto T (2011) Cytotoxic T cells in teleost fish. Dev Comp Immunol 35:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Obukhanych TV, Nussenzweig MC (2006) T-independent type II immune responses generate memory B cells. J Exp Med 203:305–310

    Article  PubMed Central  PubMed  Google Scholar 

  • Oltz EM (2001) Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res 23:121–133

    Article  CAS  PubMed  Google Scholar 

  • Persson AC, Stet RJ, Pilström L (1999) Characterization of MHC class I and beta(2)-microglobulin sequences in Atlantic cod reveals an unusually high number of expressed class I genes. Immunogenetics 50:49–59

    Article  CAS  PubMed  Google Scholar 

  • Petit J, Stange-Thomann N, Mauceli E et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Google Scholar 

  • Pilström L, Petersson A (1991) Isolation and partial characterization of immunoglobulin from cod (Gadus morhua L.). Dev Comp Immunol 15:143–152

    Google Scholar 

  • Pilstrom L, Warr G, Stromberg S (2005) Why is the antibody response of Atlantic cod so poor? The search for a genetic explanation. Fish Sci 71:961–971

    Article  Google Scholar 

  • Rangel R, McKeller MR, Sims-Mourtada JC et al (2005) Assembly of the kappa preB receptor requires a V kappa-like protein encoded by a germline transcript. J Biol Chem 280:17807–17814

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Litman GW (1998) Towards understanding the evolutionary origins and early diversification of rearranging antigen receptors. Immunol Rev 166:79–86

    Article  CAS  PubMed  Google Scholar 

  • Rast JP, Amemiya CT, Litman RT et al (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe MJ (2006) Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Comp Immunol 30:101–118

    Article  CAS  PubMed  Google Scholar 

  • Regnault A, Cumano A, Vassalli P et al (1994) Oligoclonal repertoire of the CD8 alpha alpha and the CD8 alpha beta TCR-alpha/beta murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. J Exp Med 180:1345–1358

    Article  CAS  PubMed  Google Scholar 

  • Rombout JH, Abelli L, Picchietti S et al (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    Article  CAS  PubMed  Google Scholar 

  • Romer A (1962) The vertebrate body, 3rd edn. Saunders WB Co., Philadelphia

    Google Scholar 

  • Salinas I, Zhang Y-A, Sunyer JO (2011) Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35:1346–1365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sammut B, Du Pasquier L, Ducoroy P et al (1999) Axolotl MHC architecture and polymorphism. Eur J Immunol 29:2897–2907

    Article  CAS  PubMed  Google Scholar 

  • Saunders HL, Oko ALAL, Scott ANAN et al (2010) The cellular context of AID expressing cells in fish lymphoid tissues. Dev Comp Immunol 34:669

    Article  CAS  PubMed  Google Scholar 

  • Schröder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA 93:221–225

    Article  PubMed Central  PubMed  Google Scholar 

  • Schrøder MB, Ellingsen T, Mikkelsen H et al (2009) Comparison of antibody responses in Atlantic cod (Gadus morhuaL.) to Vibrio anguillarum, Aeromonas salmonicida and Francisella sp. Fish Shellfish Immunol 27:112–119

    Google Scholar 

  • Shapiro D, Adkison M, Kaattari S (1996) Antibody affinity analysis using the ELISA. In: Lefkovitz I Jr (ed) Immunology methods manual: comprehensive sourcebook of techniques. Academic, New York, p 2353e65

    Google Scholar 

  • Shlomchik MJ, Weisel F (2012) Germinal center selection and the development of memory B and plasma cells. Immunol Rev 247:52–63

    Article  PubMed  Google Scholar 

  • Six A, Mariotti-Ferrandiz ME, Chaara W et al (2013) The past, present, and future of immune repertoire biology – the rise of next-generation repertoire analysis. Front Immunol 4:413

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smelty P, Marchal C, Renard R et al (2010) Identification of the pre-T-cell receptor alpha chain in nonmammalian vertebrates challenges the structure-function of the molecule. Proc Natl Acad Sci USA 107:19991–19996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somamoto T, Okamoto N, Nakanishi T et al (2009) In vitro generation of viral-antigen dependent cytotoxic T-cells from ginbuna crucian carp, Carassius auratus langsdorfii. Virology 389:26–33

    Article  CAS  PubMed  Google Scholar 

  • Somamoto T, Kondo M, Nakanishi T, Nakao M (2014) Helper function of CD4+ lymphocytes in antiviral immunity in ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 44:111–115

    Google Scholar 

  • Star B, Jentoft S (2012) Why does the immune system of Atlantic cod lack MHC II? Bioessays 34:648–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Star B, Nederbragt AJ, Jentoft S et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stavnezer J, Amemiya CT (2004) Evolution of isotype switching. Semin Immunol 16:257–275

    Article  CAS  PubMed  Google Scholar 

  • Stoel M, Jiang H, van Diemen CC et al (2005) Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol 174:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Tacchi L, Musharrafieh R, Larragoite ET et al (2014) Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat Commun 5:5205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takizawa F, Dijkstra JM, Kotterba P et al (2011) The expression of CD8α discriminates distinct T cell subsets in teleost fish. Dev Comp Immunol 35:752–763

    Article  CAS  PubMed  Google Scholar 

  • Tan Y-C, Blum LK, Kongpachith S et al (2014) High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol 151:55–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka Y, Nakasone H, Yamazaki R et al (2010) Single-cell analysis of T-cell receptor repertoire of HTLV-1 Tax-specific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res 70:6181–6192

    Article  CAS  PubMed  Google Scholar 

  • Tatner MF (1986) The ontogeny of humoral immunity in rainbow trout, Salmo gairdneri. Vet Immunol Immunopathol 12:93–105

    Google Scholar 

  • Toda H, Saito Y, Koike T et al (2011) Conservation of characteristics and functions of CD4 positive lymphocytes in a teleost fish. Dev Comp Immunol 35:650–660

    Article  CAS  PubMed  Google Scholar 

  • Tournefier A, Laurens V, Chapusot C et al (1998) Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev 166:259–277

    Article  CAS  PubMed  Google Scholar 

  • Utke K, Kock H, Schuetze H et al (2008) Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. Dev Comp Immunol 32:239–252

    Article  CAS  PubMed  Google Scholar 

  • Van Der Aa LM, Levraud J, Yahmi M et al (2009) A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Biol 23:7

    Google Scholar 

  • Wei M, Shinkura R, Doi Y et al (2011) Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol 12:264–270

    Article  CAS  PubMed  Google Scholar 

  • Weill JC, Cocea L, Reynaud C-A (2002) Allelic exclusion: lesson from GALT species. Semin Immunol 14:213–215, discussion 227–228

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JA, Jiang N, White RA et al (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science 324:807–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams AM, Bland PW, Phillips AC et al (2004) Intestinal alpha beta T cells differentiate and rearrange antigen receptor genes in situ in the human infant. J Immunol 173:7190–7199

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Hsu E, Marcuz A et al (1992) What limits affinity maturation of antibodies in Xenopus-the rate of somatic mutation or the ability to select mutants? EMBO J 11:4337–4347

    Google Scholar 

  • Xu Z, Parra D, Gómez D et al (2013) Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci USA 110:13097–13102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang F, Waldbieser GC, Lobb CJ (2006) The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. J Immunol 176:1655

    Article  CAS  PubMed  Google Scholar 

  • Yasuike M, De Boer J, Von Schalburg KR et al (2010) Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 11:486

    Google Scholar 

  • Ye J, Kaattari IM, Kaattari SL (2011) The differential dynamics of antibody subpopulation expression during affinity maturation in a teleost. Fish Shellfish Immunol 30:372–377

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Salinas I, Li J et al (2010) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11:827–835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu C, Feng W, Weedon J et al (2011) The multiple shark Ig chain genes rearrange and hypermutate autonomously. J Immunol 187:2492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zielinski CE, Corti D, Mele F et al (2011) Dissecting the human immunologic memory for pathogens. Immunol Rev 240:40–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Steve Kaattari, who pioneered the study of fish B cells and will be missed by fish immunologists after passing away in November 2014.

This work was supported by Institut National de la Recherche Agronomique, by the European Commission under the Work Programme 2012 of the 7th Framework Programme for Research and Technological Development of the European Union (Grant Agreement 311993 TARGETFISH), and by the National Institutes of Health Grant R01GM085207 (to J.O.S.). We acknowledge S. Fillatreau, T. Mora, A. Six, and Dr. G. Wiegertjes for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana Magadan or Pierre Boudinot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magadan, S., Sunyer, O.J., Boudinot, P. (2015). Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates. In: Hsu, E., Du Pasquier, L. (eds) Pathogen-Host Interactions: Antigenic Variation v. Somatic Adaptations. Results and Problems in Cell Differentiation, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-20819-0_10

Download citation

Publish with us

Policies and ethics