Skip to main content

Qualitative and Quantitative Measurements of Sphingolipids by Mass Spectrometry

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Sphingolipids (SLs) serve the dual roles of acting as structural entities in cellular membranes as well as bioactive signaling molecules that modulate signal transduction. As the already immense database of identified bioactive SL subspecies continues to expand, the need for structure-specific identification and quantification continues to rise. The characterization and analysis of the sphingolipidome by mass spectrometry has advanced steadily over the last 20 years with the aid of improvements in technological advancements in instrumentation, coupled with optimization of lipid extraction methodologies, and an increasing library of available reference standards. Pivotal advances in sphingolipidomics include the adoption of soft ionization techniques, including electrospray ionization (ESI), tandem mass spectrometry (MS/MS), and matrix-assisted laser desorption ionization (MALDI), as well as the use of multiple reaction monitoring (MRM), all of which have aided in improving the quality of analysis of often complex lipid extracts from mammalian, yeast, and even plant cells. In this chapter we explore qualitative and quantitative mass spectrometry methods used for structural elucidation and quantitation of sphingolipids found in cells as well as tissues. Sections included here detail extraction and HPLC methodologies, in vitro labeling techniques, use of internal and calibration lipid standards for quantitation, and data analysis of sphingolipids derived from mammalian and yeast sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  PubMed  Google Scholar 

  2. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96

    PubMed Central  PubMed  Google Scholar 

  3. Gable K, Gupta SD, Han G, Niranjanakumari S, Harmon JM, Dunn TM (2010) A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity. J Biol Chem 285:22846–22852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Eichler FS, Hornemann T, McCampbell A, Kuljis D, Penno A, Vardeh D, Tamrazian E, Garofalo K, Lee HJ, Kini L, Selig M, Frosch M, Gable K, von Eckardstein A, Woolf CJ, Guan G, Harmon JM, Dunn TM, Brown RH Jr (2009) Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1. J Neurosci 29:14646–14651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zitomer NC, Mitchell T, Voss KA, Bondy GS, Pruett ST, Garnier-Amblard EC, Liebeskind LS, Park H, Wang E, Sullards MC, Merrill AH Jr, Riley RT (2009) Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem 284:4786–4795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cowart LA, Hannun YA (2007) Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis. J Biol Chem 282:12330–12340

    Article  CAS  PubMed  Google Scholar 

  7. Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P, Eichler F, Brown RH Jr, Harmon JM, Dunn TM (2009) Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci U S A 106:8186–8191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Caligan TB, Peters K, Ou J, Wang E, Saba J, Merrill AH Jr (2000) A high-performance liquid chromatographic method to measure sphingosine 1-phosphate and related compounds from sphingosine kinase assays and other biological samples. Anal Biochem 281:36–44

    Article  CAS  PubMed  Google Scholar 

  9. McNabb TJ, Cremesti AE, Brown PR, Fischl AS (1999) The separation and direct detection of ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and evaporative light-scattering detection. Anal Biochem 276:242–250

    Article  CAS  PubMed  Google Scholar 

  10. Sullards MC, Merrill AH Jr (2001) Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Science’s STKE: signal transduction knowledge environment 2001, p l1

    Google Scholar 

  11. Pettus BJ, Bielawska A, Kroesen BJ, Moeller PD, Szulc ZM, Hannun YA, Busman M (2003) Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 17:1203–1211

    Article  CAS  PubMed  Google Scholar 

  12. Kushi Y, Rokukawa C, Numajir Y, Kato Y, Handa S (1989) Analysis of underivatized glycosphingolipids by high-performance liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Biochem 182:405–410

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki M, Yamakawa T, Suzuki A (1991) A micro method involving micro high-performance liquid chromatography-mass spectrometry for the structural characterization of neutral glycosphingolipids and monosialogangliosides. J Biochem 109:503–506

    CAS  PubMed  Google Scholar 

  14. Gu M, Kerwin JL, Watts JD, Aebersold R (1997) Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry. Anal Biochem 244:347–356

    Article  CAS  PubMed  Google Scholar 

  15. Mano N, Oda Y, Yamada K, Asakawa N, Katayama K (1997) Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal Biochem 244:291–300

    Article  CAS  PubMed  Google Scholar 

  16. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, Roscher A, Schmitz G (1999) Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Lipid Res 40:1539–1546

    CAS  PubMed  Google Scholar 

  17. Bloor WR (1928) The determination of small amounts of lipid in blood plasma. J Biol Chem 77:53–73

    CAS  Google Scholar 

  18. Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Adada MM, Orr-Gandy KA, Snider AJ, Canals D, Hannun YA, Obeid LM, Clarke CJ (2013) Sphingosine kinase 1 regulates tumor necrosis factor-mediated RANTES induction through p38 mitogen-activated protein kinase but independently of nuclear factor kappaB activation. J Biol Chem 288:27667–27679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Matmati N, Metelli A, Tripathi K, Yan S, Mohanty BK, Hannun YA (2013) Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J Biol Chem 288:17272–17284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2009) Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 579:443–467

    Article  CAS  PubMed  Google Scholar 

  22. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A (2010) Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Adv Exp Med Biol 688:46–59

    Article  CAS  PubMed  Google Scholar 

  23. Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82–91

    Article  CAS  PubMed  Google Scholar 

  24. Spassieva S, Bielawski J, Anelli V, Obeid LM (2007) Combination of C(17) sphingoid base homologues and mass spectrometry analysis as a new approach to study sphingolipid metabolism. Methods Enzymol 434:233–241

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Hoene M, Zhao X, Chen S, Wei H, Haring HU, Lin X, Zeng Z, Weigert C, Lehmann R, Xu G (2013) Stable isotope-assisted lipidomics combined with nontargeted isotopomer filtering, a tool to unravel the complex dynamics of lipid metabolism. Anal Chem 85:4651–4657

    Article  CAS  PubMed  Google Scholar 

  26. Postle AD, Hunt AN (2009) Dynamic lipidomics with stable isotope labelling. J Chromatogr B Analyt Technol Biomed Life Sci 877:2716–2721

    Article  CAS  PubMed  Google Scholar 

  27. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  28. Baranowski R, Pacha K (2002) Gas chromatographic determination of prostaglandins. Mini Rev Med Chem 2:135–144

    Article  CAS  PubMed  Google Scholar 

  29. Abidi SL (2001) Chromatographic analysis of plant sterols in foods and vegetable oils. J Chromatogr A 935:173–201

    Article  CAS  PubMed  Google Scholar 

  30. Murphy RC, Barkley RM, Zemski Berry K, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S (2005) Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 346:1–42

    Article  CAS  PubMed  Google Scholar 

  31. Duffin KL, Henion JD, Shieh JJ (1991) Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Anal Chem 63:1781–1788

    Article  CAS  PubMed  Google Scholar 

  32. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079

    Article  CAS  PubMed  Google Scholar 

  33. Hsu FF, Turk J (1999) Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:600–612

    Article  CAS  PubMed  Google Scholar 

  34. Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–599

    Article  CAS  PubMed  Google Scholar 

  35. Samuelsson K, Samuelsson B (1969) Gas-liquid chromatography-mass spectrometry of cerebrosides as trimethylsilyl ether derivatives. Biochem Biophys Res Commun 37:15–21

    Article  CAS  PubMed  Google Scholar 

  36. Samuelsson B, Samuelsson L (1969) Separation and identification of ceramides derived from human plasma sphingomyelins. J Lipid Res 10:47–55

    CAS  PubMed  Google Scholar 

  37. Samuelsson B, Samuelsson K (1969) Gas–liquid chromatography-mass spectrometry of synthetic ceramides. J Lipid Res 10:41–46

    CAS  PubMed  Google Scholar 

  38. Samuelsson B, Samuelsson K (1968) Gas-liquid chromatographic separation of ceramides as di-O-trimethylsilyl ether derivatives. Biochim Biophys Acta 164:421–423

    Article  CAS  PubMed  Google Scholar 

  39. Sweeley CC, Dawson G (1969) Determination of glycosphingolipid structures by mass spectrometry. Biochem Biophys Res Commun 37:6–14

    Article  CAS  PubMed  Google Scholar 

  40. Ariga T, Murata T, Oshima M, Maezawa M, Miyatake T (1980) Characterization of glycosphingolipids by direct inlet chemical ionization mass spectrometry. J Lipid Res 21:879–887

    CAS  PubMed  Google Scholar 

  41. Ariga T, Yu RK, Suzuki M, Ando S, Miyatake T (1982) Characterization of GM1 ganglioside by direct inlet chemical ionization mass spectrometry. J Lipid Res 23:437–442

    CAS  PubMed  Google Scholar 

  42. Murata T, Ariga T, Oshima M, Miyatake T (1978) Characterization of trimethylsilyl derivatives of cerebrosides by direct inlet-chemical ionization mass spectrometry. J Lipid Res 19:370–374

    CAS  PubMed  Google Scholar 

  43. Oshima M, Ariga T, Murata T (1977) Combined gas chromatography-chemical ionization mass spectrometry of sphingolipids. I. Glucosyl sphingosine, ceramides and cerebrosides of the spleen in Gaucher’s disease. Chem Phys Lipids 19:289–299

    Article  CAS  PubMed  Google Scholar 

  44. De Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley, Chichester

    Google Scholar 

  45. Nguyen S, Fenn JB (2007) Gas-phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci U S A 104:1111–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vieu C, Terce F, Chevy F, Rolland C, Barbaras R, Chap H, Wolf C, Perret B, Collet X (2002) Coupled assay of sphingomyelin and ceramide molecular species by gas liquid chromatography. J Lipid Res 43:510–522

    CAS  PubMed  Google Scholar 

  47. Isaac G, Bylund D, Mansson JE, Markides KE, Bergquist J (2003) Analysis of phosphatidylcholine and sphingomyelin molecular species from brain extracts using capillary liquid chromatography electrospray ionization mass spectrometry. J Neurosci Methods 128:111–119

    Article  CAS  PubMed  Google Scholar 

  48. McHowat J, Jones JH, Creer MH (1996) Quantitation of individual phospholipid molecular species by UV absorption measurements. J Lipid Res 37:2450–2460

    CAS  PubMed  Google Scholar 

  49. Christie WW (1992) Detectors for high-performance liquid chromatography of lipids with special reference to evaporative light-scattering detection. Bridgewater/Oily Press, Ayr

    Google Scholar 

  50. Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    Article  CAS  PubMed  Google Scholar 

  51. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH Jr (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884

    Article  CAS  PubMed  Google Scholar 

  52. Cole RB (1997) Electrospray ionization mass spectrometry. Wiley, New York

    Google Scholar 

  53. Dragusin M, Wehner S, Kelly S, Wang E, Merrill AH Jr, Kalff JC, van Echten-Deckert G (2006) Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB 20:1930–1932

    Article  CAS  Google Scholar 

  54. Haynes CA, Allegood JC, Park H, Sullards MC (2009) Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 877:2696–2708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224

    Article  CAS  PubMed  Google Scholar 

  56. Ecker J, Liebisch G (2014) Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog Lipid Res 54:14–31

    Article  CAS  PubMed  Google Scholar 

  57. Hellerstein MK, Neese RA (1999) Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am J Physiol 276:E1146–E1170

    CAS  PubMed  Google Scholar 

  58. Lee WN (1996) Stable isotopes and mass isotopomer study of fatty acid and cholesterol synthesis. A review of the MIDA approach. Adv Exp Med Biol 399:95–114

    Article  CAS  PubMed  Google Scholar 

  59. Berdyshev EV, Gorshkova IA, Usatyuk P, Zhao Y, Saatian B, Hubbard W, Natarajan V (2006) De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cell Signal 18:1779–1792

    Article  CAS  PubMed  Google Scholar 

  60. Schifferer R, Liebisch G, Bandulik S, Langmann T, Dada A, Schmitz G (2007) ApoA-I induces a preferential efflux of monounsaturated phosphatidylcholine and medium chain sphingomyelin species from a cellular pool distinct from HDL(3) mediated phospholipid efflux. Biochim Biophys Acta 1771:853–863

    Article  CAS  PubMed  Google Scholar 

  61. Blachnio-Zabielska AU, Persson XM, Koutsari C, Zabielski P, Jensen MD (2012) A liquid chromatography/tandem mass spectrometry method for measuring the in vivo incorporation of plasma free fatty acids into intramyocellular ceramides in humans. Rapid Commun Mass Spectrom 26:1134–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Haynes CA, Allegood JC, Wang EW, Kelly SL, Sullards MC, Merrill AH Jr (2011) Factors to consider in using [U-C]palmitate for analysis of sphingolipid biosynthesis by tandem mass spectrometry. J Lipid Res 52:1583–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Fukami H, Tachimoto H, Kishi M, Kaga T, Waki H, Iwamoto M, Tanaka Y (2010) Preparation of (13)C-labeled ceramide by acetic acid bacteria and its incorporation in mice. J Lipid Res 51:3389–3395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Tserng KY, Griffin RL (2004) Ceramide metabolite, not intact ceramide molecule, may be responsible for cellular toxicity. Biochem J 380:715–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79

    Article  CAS  PubMed  Google Scholar 

  66. Millard P, Letisse F, Sokol S, Portais JC (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28:1294–1296

    Article  CAS  PubMed  Google Scholar 

  67. Hejazi L, Wong JW, Cheng D, Proschogo N, Ebrahimi D, Garner B, Don AS (2011) Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer's disease brains. Biochem J 438:165–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rana, N.A., Singh, A., Del Poeta, M., Hannun, Y.A. (2015). Qualitative and Quantitative Measurements of Sphingolipids by Mass Spectrometry. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_14

Download citation

Publish with us

Policies and ethics