Skip to main content

3D Bioprinting Technologies for Cellular Engineering

  • Chapter
Microscale Technologies for Cell Engineering

Abstract

Bioprinting encompasses the use of additive manufacturing methods for the purpose of creating cellular constructs of varying complexity into prescribed geometrical forms (i.e. individual cells, cell agglomerates, tissues, and organs). Collectively, these methods offer many advantages over scaffold-based fabrication, including the ability to pattern complex cellular constructs on relevant length scales, the ability to tailor and modulate the extracellular environment with high precision, a means to study cell differentiation and proliferation under conditions that mimic natural biological environments, and a means to fabricate 3d tissue constructs of geometrical complexity approaching that of biological systems. Unlike industrial additive manufacturing, however, bioprinting faces additional challenges that deal with cell sensitivity and viability, the need for precise spatial and chemical tuning of the extra cellular environment, and more generally the creation of functional constructs that approximate biological tissue. In this chapter, we discuss how these challenges are being met by various bioprinting approaches, with a focus on the underlying mechanical and biological principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. www.organdonor.gov

  2. Global 3D Bioprinting Market (2014–2018), TechNavio—Infiniti Research Ltd., 2014

    Google Scholar 

  3. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149–155

    Article  Google Scholar 

  4. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    Article  Google Scholar 

  5. Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, Spector JA (2013) High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One 8(2):e56506

    Article  Google Scholar 

  6. Lanza R, Langer R, Vacanti JP (eds) (2011) Principles of tissue engineering. Academic Press, New York

    Google Scholar 

  7. Marga F, Jakab K, Khatiwala C, Shephard B, Dorfman S, Forgacs G (2012) Organ printing: a novel tissue engineering paradigm. In: 5th European conference of the international federation for medical and biological engineering, Springer, Berlin, pp 27–30

    Google Scholar 

  8. Griffith CK, Miller C, Sainson R, Calvert JW, Jeon NL, Hughes CW, George SC (2005) Tissue Eng 11:257

    Article  Google Scholar 

  9. Lodish H, Arnold B, Matsudaira P, Kaiser C, Krieger M, Scott M, Zipursky SL, Darnell J (2000) Molecular cell biology. W.H. Freeman and Company, New York

    Google Scholar 

  10. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  Google Scholar 

  11. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  Google Scholar 

  12. Jakab K, Damon B, Neagu A, Kachurin A, Forgacs G (2006) Three-dimensional tissue constructs built by bioprinting. Biorheology 43:509–513

    Google Scholar 

  13. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917

    Article  Google Scholar 

  14. Willie W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Article  Google Scholar 

  15. Kolesky DB et al (2014) 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  Google Scholar 

  16. Cohen DL et al (2010) Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2(3):035004

    Google Scholar 

  17. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues. Exp Cell Res 179(2):362–373

    Article  Google Scholar 

  18. Klebe RJ et al (1994) Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. J Tissue Cult Methods 16(3–4):189–192

    Article  Google Scholar 

  19. Hutchings IM, Martin GD (eds) (2012) Inkjet technology for digital fabrication. Wiley, New York

    Google Scholar 

  20. Hon KKB, Li L, Hutchings IM (2008) Direct writing technology – advances and developments. CIRP Ann Manuf Technol 57(2):601–620

    Article  Google Scholar 

  21. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picoliter droplets. Lab Chip 7:1139–1145

    Article  Google Scholar 

  22. Xu T et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Google Scholar 

  23. Nakamura M et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11–12):1658–1666

    Article  Google Scholar 

  24. Saunders RE, Gough JE, Derby B (2008) Biomaterials 29:193–203

    Article  Google Scholar 

  25. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Biomaterials 27:3580–3588

    Google Scholar 

  26. Reis N, Ainsley C, Derby B (2005) Ink: jet delivery of particle suspensions by piezoelectric droplet ejectors. J Appl Phys 97(9):094903

    Google Scholar 

  27. Nishioka GM, Markey AA, Holloway CK (2004) J Am Chem Soc 126:16320–16321

    Article  Google Scholar 

  28. Di Risio S, Yan N (2007) Macromol. Rapid Commun 28:1934–1940

    Article  Google Scholar 

  29. Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Biomaterials 28:3936–3943

    Article  Google Scholar 

  30. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Stem Cells 26:127–134

    Article  Google Scholar 

  31. Tao X et al (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  Google Scholar 

  32. US Patent No. 4,575,330

    Google Scholar 

  33. Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppala JV (2011) Preparation of poly(epsilon-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater 7:3850–3856

    Article  Google Scholar 

  34. Lee JW, Lan PX, Kim B, Lim G, Cho DW (2008) Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology. J Biomed Mater Res B 87B:1–9

    Article  Google Scholar 

  35. Seck TM, Melchels FPW, Feijen J, Grijpma DW (2010) Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d, l-lactide)-based resins. J Control Release 148:34–41

    Article  Google Scholar 

  36. Zhang X, Jiang XN, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sensors Actuators A Phys 77(2):149–156

    Article  Google Scholar 

  37. Seitz H et al (2005) Three‐dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788

    Article  Google Scholar 

  38. Sabree I (2014) Fabrication of bioactive glass scaffolds by stereolithography for bone tissue engineering. [Thesis]. The University of Manchester, Manchester, UK

    Google Scholar 

  39. Elomaa L et al (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ε-caprolactone) by stereolithography. Compos Sci Technol 74:99–106

    Article  Google Scholar 

  40. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322

    Article  Google Scholar 

  41. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441

    Article  Google Scholar 

  42. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070

    Article  Google Scholar 

  43. Zorlutuna P, Jeong JH, Kong H, Bashir R (2011) Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater 21:3642–3651

    Article  Google Scholar 

  44. Choi J-W et al (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15):5494–5503

    Article  Google Scholar 

  45. Cheng YL, Lee ML (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41

    Article  Google Scholar 

  46. Han L-H et al (2008) Projection microfabrication of three-dimensional scaffolds for tissue engineering. J Manuf Sci Eng 130(2):021005

    Article  Google Scholar 

  47. Han L-H et al (2010) Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 12(4):721–725

    Article  Google Scholar 

  48. Gauvin R et al (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33(15):3824–3834

    Google Scholar 

  49. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134

    Article  Google Scholar 

  50. Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. J Microelectromech Syst 7:411–415

    Article  Google Scholar 

  51. Pitts JD, Campagnola PJ, Epling GA, Goodman SL (2000) Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33:1514–1523

    Article  Google Scholar 

  52. Kaehr B, Shear JB (2007) Mask-directed multiphoton lithography. J Am Chem Soc 129:1904–1905

    Article  Google Scholar 

  53. Nielson R, Koehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5:120–125

    Article  Google Scholar 

  54. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  Google Scholar 

  55. Aizawa Y, Leipzig N, Zahir T, Shoichet M (2008) The effect of immobilized platelet derived growth factor aa on neural stem/progenitor cell differentiation on cell-adhesive hydrogels. Biomaterials 29:4676–4683

    Article  Google Scholar 

  56. Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64

    Article  Google Scholar 

  57. Wosnick JH, Shoichet MS (2008) Three-dimensional chemical patterning of transparent hydrogels. Chem Mater 20:55–60

    Article  Google Scholar 

  58. Wylie RG, Shoichet MS (2011) Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12:3789–3796

    Article  Google Scholar 

  59. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799–806

    Article  Google Scholar 

  60. Ovsianikov A et al (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2(1):014104

    Article  Google Scholar 

  61. Ovsianikov A et al (2011) Three-dimensional laser micro-and nano-structuring of acrylated poly (ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 7(3):967–974

    Article  Google Scholar 

  62. Li Y, Maynor BW, Liu J (2001) J Am Chem Soc 123:2105

    Article  Google Scholar 

  63. Amro NA, Xu S, Liu GY (2000) Langmuir 16:3006

    Article  Google Scholar 

  64. Wang XF, Ryu KS, Bullen DA, Zou J, Zhang H, Mirkin CA, Liu C (2003) Langmuir 19:8951

    Article  Google Scholar 

  65. Huo FW, Zheng ZJ, Zheng GF, Giam LR, Zhang H, Mirkin CA (2008) Science 321:1658

    Article  Google Scholar 

  66. Kim KH, Moldovan N, Espinosa HD (2005) A nanofountain probe with sub-100 nm molecular writing resolution. Small 1(6):632–635

    Article  Google Scholar 

  67. Bohandy J, Kim BF, Adrian FJ (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60(4):1538–1539

    Article  Google Scholar 

  68. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6(2):139–147

    Article  Google Scholar 

  69. Barron JA, Spargo BJ, Ringeisen BR (2004) Biological laser printing of three dimensional cellular structures. Appl Phys A 79(4–6):1027–1030

    Google Scholar 

  70. Koch L et al (2009) Laser printing of skin cells and human stem cells. Tissue Eng C Methods 16(5):847–854

    Article  Google Scholar 

  71. Nahmias Y et al (2005) Laser‐guided direct writing for three‐dimensional tissue engineering. Biotechnol Bioeng 92(2):129–136

    Article  Google Scholar 

  72. Othon CM et al (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3(3):034101

    Article  Google Scholar 

  73. Ashkin A (1970) Atomic-beam deflection by resonance-radiation pressure. Phys Rev Lett 25(19):1321

    Article  Google Scholar 

  74. Odde DJ, Renn MJ (2000) Laser‐guided direct writing of living cells. Biotechnol Bioeng 67(3):312–318

    Article  Google Scholar 

  75. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  76. Wallace J et al (2014) Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication 6(1):015003

    Article  Google Scholar 

  77. Piner RD et al (1999) “Dip-pen” nanolithography. Science 283(5402):661–663

    Article  Google Scholar 

  78. Ringeisen BR et al (eds) (2010) Cell and organ printing. Springer Science and Business Media BV, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Shepherd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larson, C., Shepherd, R. (2016). 3D Bioprinting Technologies for Cellular Engineering. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics