Skip to main content

Spatial and Temporal Responses in Stomatal Behaviour, Photosynthesis and Implications for Water-Use Efficiency

  • Chapter
  • First Online:
Rhythms in Plants

Abstract

Stomatal conductance (g s ) determines CO2 uptake for photosynthesis (A) and controls the amount of water loss via transpiration, promoting evaporative cooling and nutrient uptake. It is therefore clear that stomatal behaviour has major implications for plant productivity which can be assessed by water-use efficiency (WUE) (W i  = A/g s ). However, stomatal responses to changes in environmental stimuli or intra-cellular cues are rarely synchronised under the continually fluctuating environmental conditions experienced in the field, leading to unnecessary water loss or limiting A required for promoting high yields. In addition, stomatal responses are intra- and inter-specific, varying both temporally and spatially over a single leaf and at the whole-plant level with further implications for canopy and ecosystem fluxes of CO2 and water vapour. The effect of this variation in g s responses on both A and W i is discussed, along with the underlying anatomical characteristics which determine the potential of these physiological responses. Recent advances in both imaging techniques and modelling of guard cell membrane transporters have provided the means to more accurately assess the sensitivity, speed and magnitude of dynamic stomatal behaviours to environmental stimuli and the further impact on A and W i at a range of scales. Use of these technologies provides a route to targeted manipulation of stomatal function to promote responses, which will improve whole-plant W i without compromising CO2 uptake for productivity. Here, we discuss how scaling processes are currently used to predict g s , and the importance in considering the heterogeneous nature of stomatal dynamics, to improve the representation of how stomata influence the local and global fluxes of CO2 and water along the soil–plant–atmosphere continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasamaa K, Aphalo PJ (2015) Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance. Environ Exp Bot (in Press)

    Google Scholar 

  • Ackerson RC (1980) Stomatal response of cotton to water stress and abscisic acid as affected by water stress history. Plant Physiol 65(3):455–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270

    CAS  PubMed  Google Scholar 

  • Allen MT, Pearcy RW (2000) Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122(4):470–478

    Google Scholar 

  • Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell Online 23(2):600–627

    Google Scholar 

  • Assmann S, Grantz D (1990) Stomatal response to humidity in sugarcane and soybean: effect of vapour pressure difference on the kinetics of the blue light response. Plant Cell Environ 13(2):163–169

    Google Scholar 

  • Assmann SM, Lee DM, Malkus P (1992) Rapid stomatal response to red light in Zea mays. Photochem Photobiol 56(5):685–689

    Google Scholar 

  • Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Change Biol 20(12):3600–3609

    Google Scholar 

  • Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ 18(10):1157–1173

    Google Scholar 

  • Baldocchi DD, Luxmoore RJ, Hatfield JL (1991) Discerning the forest from the trees: an essay on scaling canopy stomatal conductance. Agric For Meteorol 54(2–4):197–226

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog Photosynth Res 4:221–224

    Google Scholar 

  • Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 36(9):1641–1657

    CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA, Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol 159(3):609–621

    CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143(1):134–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16:221–241

    CAS  PubMed  Google Scholar 

  • Bonan GB, Williams M, Fisher Ra, Oleson KW (2014) Modelling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geosci Model Dev Discuss 7(3):3085–3159

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    CAS  PubMed  Google Scholar 

  • Buckley T, Mott K, Farquhar G (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26(10):1767–1785

    CAS  Google Scholar 

  • Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. Bioscience 41:760–766

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    CAS  PubMed  Google Scholar 

  • Condon A, Rebetzke R, Farquhar G (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42(1):122

    PubMed  Google Scholar 

  • Condon A, Richards R, Farquhar G (1987) Carbon isotope discrimination is positively correlated with grain yield and dry matter production in field-grown wheat. Crop Sci 27(5):996–1001

    Google Scholar 

  • Condon A, Richards R, Rebetzke G, Farquhar G (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460

    CAS  PubMed  Google Scholar 

  • Cowan I, Farquhar G (1977) Stomatal function in relation to leaf metabolism and the environment. In: Jennings DH (ed) Integration of activity in the higher plants; symposia of the society of experimental biology. Cambridge University Press, Cambridge, pp 471–505

    Google Scholar 

  • Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22(10):396–397

    Google Scholar 

  • Dai Y, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17(12):2281–2299

    Google Scholar 

  • Darwin F (1898) Observations on Stomata. Proc Roy Soc Lond 63(389–400):413–417

    Google Scholar 

  • Davies W, Kozlowski T (1975) Stomatal responses to changes in light intensity as influenced by plant water stress. Forest Sci 21(2):129–133

    Google Scholar 

  • Davies WJ (2014) Exploiting plant drought stress biology to increase resource use efficiency and yield of crops under water scarcity. Theor Exp Plant Physiol 26(1):1–3

    Google Scholar 

  • De Kauwe MG, Kala J, Lin Y-S, Pitman AJ, Medlyn BE, Duursma RA, Abramowitz G, Wang Y-P, Miralles DG (2015) A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geosci Mod Dev 8(2):431–452

    Google Scholar 

  • De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20(5):537–557

    Google Scholar 

  • Dewar RC (2002) The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 25(11):1383–1398

    Google Scholar 

  • Dewar RC, Franklin O, Mäkelä A, McMurtrie RE, Valentine HT (2009) Optimal function explains forest responses to global change. Bioscience 59(2):127–139

    Google Scholar 

  • Ding R, Kang S, Du T, Hao X, Zhang Y (2014) Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration. PLoS ONE 9(4):1–12

    Google Scholar 

  • Downton W, Loveys B, Grant W (1988) Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytol 110(4):503–509

    Google Scholar 

  • Drake PL, Froend RH, Franks PJ (2013) Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot 64(2):495–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drewry DT, Kumar P, Long SP (2014) Simultaneous improvement in productivity, water use, and albedo through crop structural modification. Glob Change Biol 20(6):1955–1967

    Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33(1):317–345

    CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125(1):42–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochemistry 70(7):828–832

    CAS  PubMed  Google Scholar 

  • Fischer R, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:S-85–S-98

    Google Scholar 

  • Fischer R, Rees D, Sayre K, Lu Z-M, Condon A, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38(6):1467–1475

    Google Scholar 

  • Foulkes M, Scott R, Sylvester-Bradley R (2002) The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield. J Agri Sci 138(2):153–169

    Google Scholar 

  • Foulkes M, Sylvester-Bradley R, Weightman R, Snape J (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res 103(1):11–24

    Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA 106(25):10343–10347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143(1):78–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friend AD (2001) Modelling canopy CO2 fluxes: are “big-leaf” simplifications justified? Glob Ecol Biogeogr 10(6):603–619

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    CAS  PubMed  Google Scholar 

  • Grantz DA, Schwartz A (1988) Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: Implications for stomatal responses to drought and humidity. Planta 174(2):166–173

    CAS  PubMed  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28(7):834–849

    CAS  Google Scholar 

  • Guilioni L, Jones, HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148(11):1908–1912

    Google Scholar 

  • Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Change Biol 20(3):867–878

    Google Scholar 

  • Heath O (1947) Role of starch in light-induced stomatal movement, and a new reagent for staining stomatal starch. Nature 159(4045):647–647

    CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424(6951):901–908

    CAS  PubMed  Google Scholar 

  • Hills A, Chen Z-H, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosey E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very A, Simonneau T, Thibaud J, Sentenac H (2003) The Arabidopsis outward K + -channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci 100(9):5549–5554

    Google Scholar 

  • IPPC (2007) IPPC, climate change 2007: the physical science basis. In: Solomon S, Qin M, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the international panel on climate change. Cambridge

    Google Scholar 

  • Jarvis PG (1993) Prospects for bottom-up models. Scaling physiological processes: leaf to globe, Academic Press, pp 115–126

    Google Scholar 

  • Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 18(10):1079–1089

    Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15(C):1–49

    Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49(Special Issue):387–398

    Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22(9):1043–1055

    Google Scholar 

  • Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LF (2014) Dynamic photosynthesis in different environmental conditions. J Exp Bot eru406

    Google Scholar 

  • Kang Y, Outlaw WH, Andersen PC, Fiore GB (2007) Guard-cell apoplastic sucrose concentration—a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Environ 30(5):551–558

    CAS  PubMed  Google Scholar 

  • Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system. Rev Geophys 50(3)

    Google Scholar 

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche-and process-based models: CO2 matters! Glob Change Biol 17(1):565–579

    Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499(7458):324–327

    CAS  PubMed  Google Scholar 

  • Kirschbaum M, Gross L, Pearcy R (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Environ 11(2):111–121

    Google Scholar 

  • Knapp AK, Smith WK (1988) Effect of water stress on stomatal and photosynthetic responses in subalpine plants to cloud patterns. Am J Bot 851–858

    Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MRG (2014) Closing gaps: linking elements that control stomatal movement. New Phytologist

    Google Scholar 

  • Körner C, Scheel J, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    Google Scholar 

  • Laisk A, Kiirats O, Oja V (1984) Assimilatory Power (Post-illumination CO2 Uptake) in leaves measurement, environmental dependencies, and kinetic properties. Plant Physiol 76(3):723–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson T, Blatt M (2014) Stomatal size, speed and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164(4), 114.237107

    Google Scholar 

  • Lawson T, Caemmerer S, Baroli I (2010) Photosynthesis and stomatal behavior. Prog Bot 72:265–304

    Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23(2):215–220

    CAS  PubMed  Google Scholar 

  • Lawson T, Lefebvre S, Baker NR, Morison JI, Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59(13):3609–3619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson T, Morison JIL (2004) Stomatal function and physiology. The evolution of plant physiology; from whole plants to ecosystem. Elsevier Academic, Cambridge, pp 217–242

    Google Scholar 

  • Lawson T, Oxborough K, Morison JI, Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54(388):1743–1752

    CAS  PubMed  Google Scholar 

  • Lawson T, Simkin AJ, Kelly G, Granot D (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol 203(4):1064–1081

    CAS  PubMed  Google Scholar 

  • Lawson T, Weyers J (1998) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris L. primary leaves. J Exp Bot 50(337):1381

    Google Scholar 

  • Lawson T, Weyers JDB, A’Brook R (1998) The nature of heterogeneity in the stomatal behaviour of Phaseolus vulgaris L. primary leaves. J Exp Bot 49(325):1387–1395

    CAS  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    CAS  PubMed  Google Scholar 

  • Leakey A, Press M, Scholes J (2003) High-temperature inhibition of photosynthesis is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ 26(10):1681–1690

    Google Scholar 

  • Lee J, Bowling D (1992) Effect of the mesophyll on stomatal opening in Commelina communis. J Exp Bot 43(7):951

    Google Scholar 

  • Lee M, Choi Y, Burla B, Kim Y-Y, Jeon B, Maeshima M, Yoo J-Y, Martinoia E, Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10(10):1217–1223

    CAS  PubMed  Google Scholar 

  • Leuning R, Dunin FX, Wang YP (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agric Forest Meteorol 91(1/2);113–125

    Google Scholar 

  • Lu P, Outlaw WH Jr, Smith BG, Freed GA (1997) A new mechanism for the regulation of stomatal aperture size in intact leaves (accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba). Plant Physiol 114(1):109–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu P, Zhang SQ, Outlaw WH Jr, Riddle KA (1995) Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. FEBS Lett 362:180–184

    CAS  PubMed  Google Scholar 

  • Lu Z, Radin JW, Turcotte EL, Percy R, Zeiger E (1994) High yields in advanced lines of Pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol Plant 92(2):266–272

    CAS  Google Scholar 

  • Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A (2011) Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct Ecol 25(3):456–467

    Google Scholar 

  • McAusland L, Davey P, Kanwal N, Baker N, Lawson T (2013) A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. J Exp Bot 64(16):4993–5007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merilo E, Jõesaar I, Brosché M, Kollist H (2014) To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors. New Phytol 202(2):499–508

    PubMed  Google Scholar 

  • Messinger SM, Buckley TN, Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140(2):771–778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morison JIL (2003) Plant water use, stomatal control. In: Stewart BA, Howell TA (eds) Encyclopedia of water science. Marcel Dekker, New York, pp 680–685

    Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philosophical transactions of the royal society of London. Series B Containing Pap Biol Character 363:639–658

    CAS  Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86:200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31(9):1299–1306

    CAS  PubMed  Google Scholar 

  • Nejad AR, van Meeteren U (2008) Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana. J Exp Bot 59(2):289–301

    Google Scholar 

  • Ooba M, Takahashi H (2003) Effect of asymmetric stomatal response on gas-exchange dynamics. Ecol Model 164(1):65–82

    Google Scholar 

  • Outlaw WH Jr (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22(6):503–529

    Google Scholar 

  • Outlaw WH Jr, De Vlieghere-He X (2001) Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol 126(4):1716–1724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey S, Zhang W, Assmann SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336

    CAS  PubMed  Google Scholar 

  • Parlange J-Y, Waggoner PE (1970) Stomatal dimensions and resistance to diffusion. Plant Physiol 46(2):337–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Biol 41(1):421–453

    CAS  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    CAS  PubMed  Google Scholar 

  • Poole I, Weyers J, Lawson T, Raven J (1996) Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant Cell Environ 19(6):705–712

    Google Scholar 

  • Porcar-Castell A, Palmroth S (2012) Modelling photosynthesis in highly dynamic environments: the case of sunflecks. Tree Physiol 32(9):1062–1065

    PubMed  Google Scholar 

  • Pospíšilová J, Šantrůček J (1994) Stomatal patchiness. Biol Plant 36(4):481–510

    Google Scholar 

  • Radin JW, Hartung W, Kimball BA, Mauney JR (1988) Correlation of stomatal conductance with photosynthetic capacity of cotton only in a CO2-enriched atmosphere: mediation by abscisic acid? Plant Physiol 88(4):1058–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radin JW, Lu Z, Percy RG, Zeiger E (1994) Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc Natl Acad Sci 91(15):7217–7221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raschke K (1976) How stomata resolve the dilemma of opposing priorities. Phil Trans Roy Soc Lond. B, Biol Sci 273(927):551

    Google Scholar 

  • Raschke K (1975) Stomatal Action. Annu Rev Plant Physiol 26(1):309–340

    CAS  Google Scholar 

  • Raven J (1977) Evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    CAS  Google Scholar 

  • Raven JA (2002) Selection pressures on stomatal evolution. New Phytol 153(3):371–386

    CAS  Google Scholar 

  • Roden JS, Pearcy RW (1993a) Effect of leaf flutter on the light environment of poplars. Oecologia 93(2):201–207

    Google Scholar 

  • Roden JS, Pearcy RW (1993b) Photosynthetic gas exchange parameters of poplars to steady state and dynamic light environments. Oecologia 93(2):208–214

    Google Scholar 

  • Sharkey TD, Raschke K (1981) Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol 68(5):1170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solárová J, Pospisilova J (1983) Photosynthetic characteristics during ontogenesis of leaves. 8. Stomatal diffusive conductance and stomata reactivity. Photosynthetica

    Google Scholar 

  • Terashima I, Wong SC, Osmond CB, Farquhar GD (1988) Characterisation of non-uniform photosynthesis induced by absisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29(3):385

    CAS  Google Scholar 

  • Tichá I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica

    Google Scholar 

  • Tinoco-Ojanguren C, Pearcy RW (1993) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. Oecologia 94(3):395–402

    Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci 104(5):19686–19690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis. Plant Cell Environ 26(7):1097–1116

    Google Scholar 

  • UNESCO (2009) Water in a changing world. World Water Development Report, vol 3, The United Nations

    Google Scholar 

  • Urban O, Šprtová M, Košvancová M, Tomášková I, Lichtenthaler HK, Marek MV (2008) Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Tree Physiol 28(8):1189–1197

    CAS  PubMed  Google Scholar 

  • Vialet-Chabrand S, Dreyer E, Brendel O (2013) Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level. Plant Cell Environ 36(8):1539–1546

    Google Scholar 

  • Vico G, Manzoni S, Palmroth S, Katul G (2011) Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol 192(3):640–652

    CAS  PubMed  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ 31(9):1307–1316

    CAS  PubMed  Google Scholar 

  • Wang YP (2000) A refinement to the two-leaf model for calculating canopy photosynthesis. Agric For Meteorol 101(2–3):143–150

    Google Scholar 

  • Wang YP, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: model description and comparison with a multi-layered model. Agric Meteorol 91(1–2):89–111

    Google Scholar 

  • Wang Y, Hills A, Blatt M (2014) Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency. Plant Physiol 113:233403

    Google Scholar 

  • Ward FA (2013) Economic impacts on irrigated agriculture of water conservation programs in drought. J Hydrol 508:114–124

    Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32(9):1066–1081

    PubMed  Google Scholar 

  • Weyers J, Lawson T, Peng Z (1997) Variation in stomatal characteristics at the whole-leaf level. Seminar series-Society for experimental biology 63:129–150

    Google Scholar 

  • Weyers JDB, Lawson T (1997) Heterogeneity in stomatal characteristics. Adv Bot Res 26:317–352

    Google Scholar 

  • Wilmer C, Fricker M (1996) Stomata. Chapman and Hall, London

    Google Scholar 

  • Wong S, Cowan I, Farquhar G (1979) Stomatal conductance correlates with photosynthetic capacity

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1978) Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb. ex Spreng influence of irradiance and partial pressure of carbon dioxide. Plant Physiol 62(4):670–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woods DB, Turner NC (1971) Stomatal response to changing light by four tree species of varying shade tolerance. New Phytol 70(1):77–84

    Google Scholar 

  • Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23(13):865–877

    PubMed  Google Scholar 

Download references

Acknowledgments

This work supported SV-C through a BBSRC grant BB/1001187_1 to TL. NERC funding is acknowledged for PhD studentship to JSAM (Env-East DTP) and LM (NERC quota studentship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McAusland, L., Vialet-Chabrand, S.R.M., Matthews, J.S.A., Lawson, T. (2015). Spatial and Temporal Responses in Stomatal Behaviour, Photosynthesis and Implications for Water-Use Efficiency . In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_5

Download citation

Publish with us

Policies and ethics