Skip to main content

Inverse Problem of Electrocardiography: Estimating the Location of Cardiac Ischemia in a 3D Realistic Geometry

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

The inverse problem of electrocardiography (IPE) has been formulated in different ways in order to non invasively obtain valuable informations about the heart condition. Most of the formulations solve the IPE neglecting the dynamic behavior of the electrical wave propagation in the heart. In this work we take into account this dynamic behavior by constraining the cost function with the monodomain model. We use an iterative algorithm combined with a level set formulation and the use of a simple phenomenological model. This method has been previously presented to localize ischemic regions in a 2D cardiac tissue. In this work, we analyze the performance of this method in different 3D geometries. The inverse procedure exploits the spatiotemporal correlations contained in the observed data, which is formulated as a parametric adjust of a mathematical model that minimizes the misfit between the simulated and the observed data. Numerical results over 3D geometries show that the algorithm is capable of identifying the position and the size of the ischemic regions. For the experiments with a realistic anatomical geometry, we reconstruct the ischemic region with roughly a 47 % of false-positive rate and a 13 % false-negative rate under 10 % of input noise. The correlation coefficient between the reconstructed ischemic region and the ground truth exceeds the value of 0.70).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Álvarez, D., Alonso-Atienza, F., Rojo-Álvarez, J.L., García-Alberola, A., Moscoso, M.: Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. Math. Comput. Model. 55, 1770–1781 (2012)

    Article  MATH  Google Scholar 

  2. Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., Roithinger, F.X., Stuehlinger, M., Pachinger, O., Tilg, B., Hintringer, F.: Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J. Am. Coll. Cardiol. 48(10), 2045–2052 (2006). Focus issue: Cardiac. Imaging

    Article  Google Scholar 

  3. Brooks, D.H., Ahmad, G.F., MacLeod, R.S., Maratos, G.M.: Inverse electrocardiography by simultaneous imposition of multiple constraints. IEEE Trans. Biomed. Eng. 46(1), 3–18 (1999)

    Article  Google Scholar 

  4. Chávez, C., Alonzo-Atienza, F., Alvarez, D.: Avoiding the inverse crime in the inverse problem of electrocardiography: estimating the shape and location of cardiac ischemia. In: Computing in Cardiology Conference (CinC), pp. 687–690, September 2013

    Google Scholar 

  5. Farina, D., Dossel, O.: Model-based approach to the localization of infarction. In: Computers in Cardiology, pp. 173–176, 30 September 2007–3 October 2007

    Google Scholar 

  6. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). http://dx.doi.org/10.1002/nme.2579

    Article  MATH  MathSciNet  Google Scholar 

  7. Greensite, F., Huiskamp, G.: An improved method for estimating epicardial potentials from the body surface. IEEE Trans. Biomed. Eng. 45(1), 98–104 (1998)

    Article  Google Scholar 

  8. Gulrajani, R.M.: The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag. 17(5), 84–101 (1998)

    Article  Google Scholar 

  9. Huiskamp, G., Van Oosterom, A.: The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng. 35(12), 1047–1058 (1988)

    Article  Google Scholar 

  10. Lazzara, R., El-Sherif, N., Hope, R.R., Scherlag, B.J.: Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ. Res. 42(6), 740–749 (1978). http://circres.ahajournals.org/content/42/6/740.short

    Article  Google Scholar 

  11. Li, G., He, B.: Non-invasive estimation of myocardial infarction by means of a heart-model-based imaging approach: a simulation study. Med. Biol. Eng. Comput. 42(1), 128–136 (2004)

    Article  Google Scholar 

  12. MacLachlan, M.C., Nielsen, B.F., Lysaker, M., Tveito, A.: Computing the size and location of myocardial ischemia using measurements of ST-segment shift. IEEE Trans. Biomed. Eng. 53(6), 1024–1031 (2006)

    Article  Google Scholar 

  13. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, 1st edn. Oxford University Press, Oxford (1995)

    Book  Google Scholar 

  14. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  Google Scholar 

  15. Nielsen, B., Lysaker, M., Grottum, P.: Computing ischemic regions in the heart with the bidomain model; first steps towards validation. IEEE Trans. Med. Imaging 32(6), 1085–1096 (2013)

    Article  Google Scholar 

  16. van Oosterom, A., Jacquemet, V.: Genesis of the P wave: atrial signals as generated by the equivalent double layer source model. Europace 7(s2), S21–S29 (2005)

    Article  Google Scholar 

  17. Rudy, Y.: Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ. Res. 112(5), 863–874 (2013)

    Article  Google Scholar 

  18. Ruud, T., Nielsen, B., Lysaker, M., Sundnes, J.: A computationally efficient method for determining the size and location of myocardial ischemia. IEEE Trans. Biomed. Eng. 56(2), 263–272 (2009)

    Article  Google Scholar 

  19. Shah, A.J., Hocini, M., Pascale, P., Roten, L., Komatsu, Y., Daly, M., Ramoul, K., Denis, A., Derval, N., Sacher, F., Dubois, R., Bokan, R., Eliatou, S., Strom, M., Ramanathan, C., Jais, P., Ritter, P., Haissaguerre, M.: Body surface electrocardiographic mapping for non-invasive identification of arrhythmic sources. Arrhythm. Electrophysiol. Rev. 2(1), 16–22 (2013)

    Article  Google Scholar 

  20. Tokuda, M., Tedrow, U.B., Inada, K., Reichlin, T., Michaud, G.F., John, R.M., Epstein, L.M., Stevenson, W.G.: Direct comparison of adjacent endocardial and epicardial electrograms: implications for substrate mapping. J. Am. Hear. Assoc. 2(2), e000215 (2013). http://jaha.ahajournals.org/content/2/5/e000215.abstract

    Google Scholar 

  21. Trénor, B., Romero, L., Ferrero Jr., J.M., Sáiz, J., Moltó, G., Alonso, J.M.: Vulnerability to reentry in a regionally ischemic tissue: a simulation study. Ann. Biomed. Eng. 35(10), 1756–1770 (2007)

    Article  Google Scholar 

  22. Wang, D., Kirby, R.M., MacLeod, R.S., Johnson, C.R.: Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution. J. Comput. Phys. 250, 403–424 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Spanish MINECO grants TEC-2013-46067-R, FIS2013-41802-R and by Carlos III of Madrid University PIF grant to Carlos E. Chavez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Chávez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chávez, C.E., Zemzemi, N., Coudière, Y., Alonso-Atienza, F., Álvarez, D. (2015). Inverse Problem of Electrocardiography: Estimating the Location of Cardiac Ischemia in a 3D Realistic Geometry. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics