Skip to main content

Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling

  • Chapter
Algal Biorefineries

Abstract

This chapter discusses new and multiple uses of rare earth elements (REEs) in modern commercial, industrial and military products and their ecological effects on the aquatic environment, with a particular focus on algae. Their unique physical and chemical properties, global locations and availability are described. Various applications for REEs, which may involve algae, are reviewed, including uses as fertilizers, markers, tracers, “bloom killers”, or as biochemical agents such as tracers or bioindicators for physiological studies. We describe the ecological implications of increased release of REEs into the environment through mining, agricultural and industrial activities, as well as the possibility of using algae for bioremediation and recycling purposes. We conclude that a better understanding of the bioavailability, toxicity and uptake of REEs, as well as their physiological implications for algae at the molecular, enzymatic and life-cycle levels, are vital for environmentally-friendly production and use of these valuable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramczuk JW (1985) The effects of lanthanum chloride on pregnancy in mice and on preimplantation mouse embryos in vitro. Toxicology 34:315–320

    Article  CAS  PubMed  Google Scholar 

  • Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chem Geol 270:148–163

    Article  CAS  Google Scholar 

  • Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414

    Article  CAS  PubMed  Google Scholar 

  • Banaszak JE, Rittmann BE, Reed DT (1999) Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures. J Radioanal Nucl Chem 241:385–435

    Article  CAS  Google Scholar 

  • Bao YM, Zhang HJ, Zhang YS, Guo TW, Yang YX (2001) Study on rare earth compound feeds for young abalone. J Chin Rare Earth Soc 22:35–39. (in Chin.)

    Google Scholar 

  • Barry MJ, Meehan BJ (2000) The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere 41:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Bauer CS, Plieth C, Bethmann B, Popescu O, Hansen U, Simonis W, Schönknecht G (1998) Strontium-induced repetitive calcium spikes in a unicellular green alga. Plant Physiol 117:545–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behera S, Singh R, Arora R, Kumar Sharma N, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol. doi:10.3389/fbioe.2014.00090

    PubMed Central  PubMed  Google Scholar 

  • Bental M, Degani H, Avron M (1988) 23Na-NMR studies of the intracellular sodium ion concentration in the halotolerant alga Dunaliella salina. Plant Physiol 87:813–817

    Google Scholar 

  • Bhat SV, Melo JS, Chaugule BB, Souza SFD (2008) Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Rathjen AH, Graham RD, Tribe DE (1990) Rare earth elements in biological systems. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 13. Elsevier Science Publishers, Amsterdam, pp 423–452

    Google Scholar 

  • Bulman RA (2003) Metabolism and toxicity of the lanthanides. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 40, The lanthanides and their interrelations with biosystems. Marcel Dekker, New York, pp 39–67

    Google Scholar 

  • Bünzli JCG, Eliseeva SV (2011) Basics of lanthanide photophysics. In: Hänninen P, Härmä H (eds) Lanthanide luminescence: photophysical, analytical and biological aspects, Springer series on fluorescence. Springer, Berlin/Heidelberg, pp 1–46

    Google Scholar 

  • Censi P, Cangemi M, Brusca L, Madonia P, Saiano F, Zuddas P (2015) The behaviour of rare-earth elements, Zr and Hf during biologically-mediated deposition of silica-stromatolites and carbonate-rich microbial mats. Gondwana Res 27(1):209–215

    Article  CAS  Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweed as animal fodder, manure and for energy. In: Chapman VJ, Chapman DJ (eds) Seaweed and their uses. London and New York: Chapman & Hall, pp 30–61

    Google Scholar 

  • Cockerill AF, Davies GLO, Harden RC, Rackham DM (1973) Lanthanide shift reagents for nuclear magnetic resonance spectroscopy. Chem Rev 73:553–588

    Article  CAS  Google Scholar 

  • Corkeron M, Webb GE, Moulds J, Grey K (2012) Discriminating stromatolite formation modes using rare earth element geochemistry: trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, Northern Territory, Australia. Precambrian Res 212–213:194–206

    Article  CAS  Google Scholar 

  • Darehshouri A, Lütz-Meindl U (2010) H2O2 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy. Protoplasma 239:49–56

    Google Scholar 

  • Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31:933–943

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Diniz V, Volesky B (2005a) Biosorption of La, Eu and Yb using Sargassum biomass. Water Res 39:239–247

    Article  CAS  PubMed  Google Scholar 

  • Diniz V, Volesky B (2005b) Effect of counterions on lanthanum biosorption by Sargassum polycystum. Water Res 39:2229–2236

    Article  CAS  PubMed  Google Scholar 

  • Diniz V, Weber ME, Volesky B, Naja G (2008) Column biosorption of lanthanum and europium by Sargassum. Water Res 42:363–371

    Article  CAS  PubMed  Google Scholar 

  • Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101

    Article  CAS  PubMed  Google Scholar 

  • Elbaz-Poulichet F, Dupuy C (1999) Behaviour of rare earth elements at the freshwater-seawater interface of two acid mine rivers: the Tinto and Odiel (Andalucia, Spain). Appl Geochem 14:1063–1072

    Article  CAS  Google Scholar 

  • EPA 2012 (2012) Rare earth elements: a review of production, processing, recycling, and associated environmental issues. United States Environmental Protection Agency EPA 600/R-12/572/December 2012

    Google Scholar 

  • Evseeva T, Geras’kin S, Majstrenko T, Brown J, Belykh E (2010) Comparative estimation of 232Th and stable Ce (III) toxicity and detoxification pathways in freshwater alga Chlorella vulgaris. Chemosphere 81:1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Fu FF, Akagi T, Yabuki S, Iwaki M, Ogura N (2000) Distribution of rare earth elements in seaweed: implication of two different sources of rare earth elements and silicon in seaweed. J Phycol 36:62–70

    Article  CAS  Google Scholar 

  • Fuma S, Takeda H, Takaku Y, Hisamatsu S, Kawabata Z (2005) Effects of dysprosium on the species-defined microbial microcosm. Bull Environ Contam Toxicol 74:263–272

    Article  CAS  PubMed  Google Scholar 

  • Garatun-Tjeldstø O, Otterå H, Julshamn K, Austreng E (2006) Food ingestion in juvenile cod estimated by inert lanthanide markers effects of food particle size. ICES J Mar Sci 63:311–319

    Article  Google Scholar 

  • Goecke F, Jerez CG, Zachleder V, Figueroa FL, Řezanka T, Bišová K, Vitová M (2015) Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front Microbiol 6:2. doi:10.3389/fmicb.2015.00002

    Article  PubMed Central  PubMed  Google Scholar 

  • Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Hong M, Wang Y, Zhou M, Cai J, Liu C, Gong S, Hong FS (2011) Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol Trace Elem Res 141:305–316

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2014) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Searched on 6 Feb 2014

  • Guo P, Wang J, Li X, Zhu J, Reinert T, Heitmann J, Spemann D, Vogt J, Flagmeyer R-H, Butz T (2000) Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells. Nucl Inst Methods Phys Res B 161–163:801–807

    Article  Google Scholar 

  • Hagan AK, Zuchner T (2011) Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem 400:2847–2864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He ML, Rambeck WA (2000) Rare earth elements – a new generation of growth promoters for pigs? Arch Tierernahr 53:323–334

    Article  PubMed  Google Scholar 

  • He Y, Xue L (2005) Biological effects of rare earth elements and their action mechanisms. Chin J Appl Ecol 16:1983–1989. (in Chin.)

    CAS  Google Scholar 

  • Hill K, Hemmler R, Kovermann P, Calenberg M, Kreimer G, Wagner R (2000) A Ca2+ – and voltage-modulated flagellar ion channel is a component of the mechanoshock response in the unicellular green alga Spermatozopsis similis. BBA Rev Biomembr 1466:187–204

    Google Scholar 

  • Hodge HC, Sterner JH (1949) Tabulation of toxicity classes. Am Ind Hyg Assoc Q 10:93–96

    CAS  PubMed  Google Scholar 

  • Horovitz CT (2000) Biochemistry and physiology of scandium and yttrium, Part 2: Biochemistry and applications, vol 13B, Biochemistry of the elements. Kluwer Academic/Plenum Publishers/Springer, New York, pp 39–163

    Book  Google Scholar 

  • Hou XL, Yan XJ (1998) Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae. Sci Total Environ 222:141–156

    Article  CAS  Google Scholar 

  • Hu QH, Zheng SP, Tang SM, Guan L (2001) Effects of Sm and Y on growth of Chlorella ellipsoidea. Agro-Environ Prot 20:398–404. (in Chin.)

    Google Scholar 

  • Hu ZH, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  • Huang H, Chen L, Liu XQ, Liu C, Cao W, Lu Y, Hong FS (2008) Absorption and transfer of light and photoreduction activities of spinach chloroplasts under calcium deficiency: promotion by cerium. Biol Trace Elem Res 122:157–167

    Article  CAS  Google Scholar 

  • Ippolito MP, Fasciano C, d’Aquino L, Morgana M, Tommasi F (2010) Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang? Arch Environ Contam Toxicol 58:42–52

    Article  CAS  PubMed  Google Scholar 

  • Jayasekera R, Rossbach M (1996) Use of seaweeds for monitoring trace elements in coastal waters. Environ Geochem Health 18:63–68

    Article  CAS  PubMed  Google Scholar 

  • Jegerschöld C, Rutherford AW, Mattioli TA, Crimi M, Bassi R (2000) Calcium binding to the photosystem II subunit CP29. J Biol Chem 275:12781–12788

    Article  PubMed  Google Scholar 

  • Jehl C, Barsczus GH (1996) Origine des terres rares dans les mattes cyanobactériennes (kopara) de l’atoll de Tikehau (Tuamotu, Polynésie Francaise). C R Acad Sci 322:205–212

    CAS  Google Scholar 

  • Jin X, Chu Z, Yan F, Zeng Q (2009) Effects of lanthanum(III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Limnologica 39:86–93

    Article  CAS  Google Scholar 

  • Johannesson KH, Telfeyan K, Chevis DA, Rosenheim BE, Leybourne MI (2014) Rare earth elements in stromatolites. 1. Evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. In: Dilek Y, Furnes H (eds) Archean earth and early life. Springer, Dordrecht, pp 385–411

    Chapter  Google Scholar 

  • Kam V, Moseyko N, Nemson J, Feldman LJ (1999) Gravitaxis in Chlamydomonas reinhardtii: characterization using video microscopy and computer analysis. Int J Plant Sci 160:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Kanchana S, Jeyanthi J, Kathiravan R, Suganya K (2014) Biosorption of heavy metals using algae: a review. Int J Pharm Med Bio Sci 3:1–9

    CAS  Google Scholar 

  • Kang L, Shen Z, Jin C (2000) Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277. Chin Sci Bull 45:585–592

    Google Scholar 

  • Kano N, Aoyagi Y, Imaizumi H (2001) Determination of rare earth elements in seaweed and seawater samples on the coast in Niigata Prefecture by ICP-MS after solvent extraction. Anal Sci 17:1011–1014

    Article  Google Scholar 

  • Kastori RR, Maksimović IV, Putnik-Delić MI, Zeremski-Škorić TM (2010) Rare earth elements: yttrium and higher plants. Matica Srpska Proc Nat Sci 118:87–98

    Article  CAS  Google Scholar 

  • Lee KY, Kim KW, Baek YJ, Chung DY, Lee EH, Lee SY, Moon JK (2014) Biosorption of uranium(VI) from aqueous solution by biomass of brown algae Laminaria japonica. Water Sci Technol 70:136–143

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Wang CH, Wen SH (1999) Study on culture conditions of Spirulina platensis. Food Ferment Ind 25:13–17. (in Chin.)

    CAS  Google Scholar 

  • Li FR, Wang JT, Chen YJ (2004) Experimental research on treating the blue algae bloom with rare earth element in Dianchi Lake. Environ Sci (China) 23:101–103. (in Chin.)

    Google Scholar 

  • Li G, Jiang J, Chen J, Zou Y, Zhang X (2006) Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela. Chin J Appl Ecol 17:159–162. (in Chin.)

    CAS  Google Scholar 

  • Li Z, Cai MG, Huang SY, Shi RG, Lu XX, Qi AX, Wu R (2008) Effects of cerium on cell growth and astaxanthin production of Haematococcus pluvialis. Mar Sci (China) 32:37–41. (in Chin.)

    Google Scholar 

  • Li J, Hong M, Yin X, Liu J (2010) Effects of the accumulation of the rare earth elements on soil macrofauna community. J Rare Earths 28:957–964

    Article  CAS  Google Scholar 

  • Li Z, Zhang Z, Yu M, Zhou Y, Zhao Y (2011) Effects of lanthanum on calcium and magnesium contents and cytoplasmic streaming of internodal cells of Chara corallina. Biol Trace Elem Res 143:555–561

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang JL, Jiang Y (2012) Trace rare earth element detection in food and agricultural products based on flow injection walnut shell packed microcolumn preconcentration coupled with inductively coupled plasma mass spectrometry. J Agric Food Chem 60:3033–3041

    Article  CAS  PubMed  Google Scholar 

  • Liang T, Li K, Wang L (2014) State of rare earth elements in different environmental components in mining areas of China. Environ Monit Assess 186:1499–1513

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Tang RH, Zhang QX, Shi JY, Li XM, Liu ZQ, Zhao W (1986) Stimulation of cell growth of Tetrahymena pyriformis and Chlamydomonas reinhardtii by trace elements. Biol Trace Elem Res 9:89–99

    Article  CAS  Google Scholar 

  • Loell M, Reiher W, Felix-Henningsen P (2011) Contents and bioavailability of rare earth elements in agricultural soils in Hesse (Germany). J Plant Nutr Soil Sci 174:644–654

    Article  CAS  Google Scholar 

  • Lunde G, Smidsrød O, Haug A (1972) Selectively of polyuronates for lanthanide ions. Acta Chem Scand 26:3421–3426

    Article  CAS  Google Scholar 

  • Lürling M, Faassen EJ (2012) Controlling toxic cyanobacteria: effects of dredging and phosphorus-binding clay on cyanobacteria and microcystins. Water Res 46:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Lürling M, van Oosterhout F (2013) Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710:253–263

    Article  CAS  Google Scholar 

  • Markert B (1987) The pattern of distribution of lanthanide elements in soils and plants. Phytochemistry 26:3167–3170

    Article  CAS  Google Scholar 

  • Mashitah SM, Shazili NAM, Rashid MKA (2012) Elemental concentrations in brown seaweed, Padina sp. along the east coast of Peninsular Malaysia. Aquat Ecosyst Health 15:267–278

    CAS  Google Scholar 

  • Michetti KM, Leonardi PI, Cáceres EJ (2006) Cytochemical localization of acid phosphatase in Stigeoclonium tenue (Chaetophorales, Chlorophyceae). Biocell 30:491–496

    CAS  PubMed  Google Scholar 

  • Moreda-Piñeiro A, Peña-Vázquez E, Bermejo-Barrera P (2012) Significance of the presence of trace and ultratrace elements in seaweeds. In: Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology, 1st edn. Wiley-Blackwell, Oxford, UK, pp 116–172

    Google Scholar 

  • Muraleedharan TR, Philip L, Iyengar L, Venkobachar C (1994) Application studies of biosorption for monazite processing industry effluents. Bioresour Technol 49:179–186

    Article  CAS  Google Scholar 

  • Niu W, He E, Wu Q, Zhou W, Zhang Y, Huang B, Zhao X (2012) Use of fluorescent europium chelates as labels for detection of microcystin-LR in Taihu Lake, China. J Rare Earths 30:941–946

    Article  CAS  Google Scholar 

  • Nultsch W (1979) Effect of external factors on phototaxis of Chlamydomonas reinhardtii. III Cations. Arch Microbiol 123:93–99

    Article  CAS  Google Scholar 

  • Ogata T, Terakado Y (2006) Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: significance of anthropogenic Gd. Geochem J 40:463–474

    Article  CAS  Google Scholar 

  • Okajima MK, Nakamura M, Mitsumata T, Kaneko T (2010) Cyanobacterial polysaccharide gels with efficient rare-earth-metal sorption. Biomacromolecules 11:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RC, Garcia O Jr (2009) Study of biosorption of rare earth metals (La, Nd, Eu, Gd) by Sargassum sp. biomass in batch systems: physicochemical evaluation of kinetics and adsorption models. Adv Mater Res 71–73:605–608

    Article  Google Scholar 

  • Oliveira EJA, Vila Nova SP, Alves-Jr S, Santa-Cruz P, Molica RJR, Teixeira A, Malageño E, Lima Filho JL (2006) A fluorescent-labeled microcystin-LR terbium cryptate. J Braz Chem Soc 17:243–250

    Article  CAS  Google Scholar 

  • Oliveira RC, Jouannin C, Guibal E, Garcia O Jr (2011) Samarium(III) and praseodymium(III) biosorption on Sargassum sp.: batch study. Process Biochem 46:736–744

    Article  CAS  Google Scholar 

  • Oliveira RC, Guibal E, Garcia O Jr (2012) Biosorption and desorption of lanthanum(III) and neodymium(III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals. Biotechnol Prog 28:715–722

    Article  CAS  PubMed  Google Scholar 

  • Oliveri E, Neri R, Bellanca A, Riding R (2010) Carbonate stromatolites from a Messinian hypersaline setting in the Caltanissetta Basin, Sicily: petrographic evidence of microbial activity and related stable isotope and rare earth element signatures. Sedimentology 57:142–161

    Article  CAS  Google Scholar 

  • Olmez I, Sholkovitz ER, Hermann D, Eganhouse RP (1991) Rare earth elements in sediments off Southern California: a new anthropogenic indicator. Environ Sci Technol 25:310–316

    Article  CAS  Google Scholar 

  • Ono T (2000) Effects of lanthanide substitution at Ca2+-site on the properties of the oxygen evolving center of Photosystem II. J Inorg Biochem 82:85–91

    Article  CAS  PubMed  Google Scholar 

  • Pakrasi H, Ogawa T, Bhattacharrya-Pakrasi M (2001) Chapter 14: Transport of metals: a key process in oxygenic photosynthesis. In: Aro EM, Andersson B (eds) Regulation of photosynthesis. Springer Netherlands, Dordrecht, pp 253–264

    Google Scholar 

  • Palasz A, Czekaj P (2000) Toxicological and citophysiological aspects of lanthanides action. Acta Biochim Pol 47:1107–1114

    CAS  PubMed  Google Scholar 

  • Pang X, Li D, Peng A (2001) Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. J Soils Sediments 1:124–129

    Article  CAS  Google Scholar 

  • Pellegrini L, Epiard-Lahaye M, Penot M (1991) De l’utilisation du lanthane comme traceur de la voie apoplastique chez Cystoseira nodicaulis (Fucales, Cystoseiraceae). Can J Bot 69:18–25. (in Franz.)

    Article  CAS  Google Scholar 

  • Peng A, Pang X (2002) The free radical mechanism of rare earth elements in anti-adversity for plants. Environ Chem 21:313–317. (in Chin.)

    CAS  Google Scholar 

  • Pitta TP, Sherwood EE, Kobel AM, Berg HC (1997) Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113. J Bacteriol 179:2524–2528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264

    Article  CAS  PubMed  Google Scholar 

  • Polinares (2012) Fact sheet: rare earths oxides (REO). Working paper no. 37, March 2012

    Google Scholar 

  • Qu KM, Yuan XY, Xin FY (1998) Enhancement of 3 rare earth elements to Isochrysis galbana. J Fish Res 5:42–47. (in Chin.)

    Google Scholar 

  • Qu CX, Gong X, Liu C, Hong M, Wang L, Hong FS (2012) Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. Biol Trace Elem Res 146:94–100

    Article  CAS  PubMed  Google Scholar 

  • Reid RJ, Rengel Z, Smith FA (1996) Membrane fluxes and comparative toxicities of aluminium, scandium and gallium. J Exp Bot 47:1881–1888

    Article  CAS  Google Scholar 

  • Ren QG, Hua Y, Shen H, Zhong L, Jin CZ, Mi Y, Yao HY, Xie YN, Wei SQ, Zhou LW (2007) Cytochemical behavior of rare earth ions in Euglena gracilis studied by XAFS. J Radioanal Nucl Chem 272:359–362

    Article  CAS  Google Scholar 

  • Ren M, Chen X, Zheng Y, Shen H, Ren Q, Li Y, Watt F (2013) Sub-100-nm STIM imaging and PIXE quantification of rare earth elements in algae cells. X-Ray spectrom special issue. In: European conference on X-Ray spectrometry, vol 42, 18–22 June 2012, Vienna, Austria, pp 237–241

    Google Scholar 

  • Rice TR, Willis VM (1959) Uptake, accumulation and loss of radioactive cerium-144 by marine planktonic algae. Limnol Oceanogr 4:277–290

    Article  CAS  Google Scholar 

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    Article  CAS  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: The crust (ed RL Rudnick), vol 3, Treatise on geochemistry (eds Holland HD, Turekian KK). Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Sahoo PK, Tripathy S, Equeenuddin SM, Panigrahi MK (2012) Geochemical characteristics of coal mine discharge vis-à-vis behavior of rare earth elements at Jaintia Hills coalfield, northeastern India. J Geochem Explor 112:235–243

    Article  CAS  Google Scholar 

  • Sakamoto N, Kano N, Imaizumi H (2008a) Biosorption of uranium and rare earth elements using biomass of algae. Bioinorg Chem Appl 706240, 8 pp. doi:10.1155/2008/706240

  • Sakamoto N, Kano N, Imaizumi H (2008b) Determination of rare earth elements, thorium and uranium in seaweed samples on the coast in Niigata Prefecture by inductively coupled plasma mass spectrometry. Appl Geochem 23:2955–2960

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez I, Huerta-Diaz MA, Choumiline E, Holguín-Quiñones O, Zertuche-González JA (2001) Elemental concentration in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ Pollut 114:145–160

    Article  PubMed  Google Scholar 

  • Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  • Santos JG, Dutra JDL, Alves S Jr, de Sá GF, da Costa JNB, Freire RO (2013) Theoretical spectroscopic study of the conjugate microcystin-LR-europium cryptate. J Braz Chem Soc 24:236–240

    Article  CAS  Google Scholar 

  • Schacht U, Wallmann K, Kutterolf S (2010) The influence of volcanic ash alteration on the REE composition of marine pore waters. J Geochem Explor 106:176–187

    Article  CAS  Google Scholar 

  • Schönknecht G, Bauer CS, Simonis W (1998) Light-dependent signal transduction and transient changes in cytosolic Ca2+ in a unicellular green alga. J Exp Bot 49:1–11

    Google Scholar 

  • Schwabe A, Meyer U, Grün M, Voigt KD, Flachowsky G, Dänicke S (2012) Effect of rare earth elements (REE) supplementation to diets on the carry-over into different organs and tissues of fatng bulls. Livest Sci 143:5–14

    Article  Google Scholar 

  • Servigne M, Tchakirian A (1939) Sur la presence d’elements des terres rares dans les algues calcaires (Lithothamnium calcareum). C R Acad Sci 209:570–572

    CAS  Google Scholar 

  • Shen H, Ren QG, Mi Y, Shi XF, Yao HY, Jin CZ, Huang YY, He W, Zhang J, Liu B (2002) Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods. Nucl Inst Methods Phys Res B 189:506–510

    Article  CAS  Google Scholar 

  • Sheng XY, Hambidge KM, Krebs NF, Lei S, Westcott JE, Miller LV (2005) Dysprosium as a non-absorbable fecal marker in studies of zinc homeostasis. Am J Clin Nutr 82:1017–1023

    CAS  PubMed  Google Scholar 

  • Shi Q, Guo WD, Hu MH, Yang YP, Wu YM, Gong ZB (2004) The content of rare earth elements in benthic organisms from the Xiamen Bay and their distribution and environmental implications. Acta Oceanol Sin 26:87–94. (in Chin.)

    CAS  Google Scholar 

  • Singh RN, Subbaramaiah K (1970) Effects of chemicals on Fischerella muscicola (Thuret) Gom. Can J Microbiol 16:193–199

    Article  CAS  PubMed  Google Scholar 

  • Squier T, Bigelow DJ, Fernandez-Belda FJ, deMeis L (1990) Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase. J Biol Chem 265:13713–13720

    CAS  PubMed  Google Scholar 

  • Starý J, Kratzer K, Prášilová J (1983) Systematic study of the cumulation of elements on alga. Toxicol Environ Chem 7:47–60

    Article  Google Scholar 

  • Su D, Li PJ, Tai PD (2005) Toxic effects of lanthanides on Chlorella autotrophica. Chin J Ecol 24:382–384. (in Chin.)

    Google Scholar 

  • Tai P, Zhao Q, Su D, Li P, Stagnitti F (2010) Biological toxicity of lanthanide elements on algae. Chemosphere 80:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Thomas PJ, Carpenter D, Boutin C, Allison JE (2014) Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Chemosphere 96:57–66

    Article  CAS  PubMed  Google Scholar 

  • Tse Pui-Kwan (2011) China’s rare earth industry, U.S. Geological Survey Open-File Report 2011–1042, 11 pp

    Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems – a review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  • Ueda T, Muratsugu M, Kobatake Y (1974) Roles of Ca2+, phospholipids and proteins in the excitable membrane of protoplasmic droplet isolated from Nitella. Biochim Biophys Acta 373:286–294

    Google Scholar 

  • USGS (2014) Mineral commodity summaries, Annual publication of the United States Geological Survey, February 2014, 128–129 pp

    Google Scholar 

  • Valcheva-Traykova M, Saso L, Kostova I (2014) Involvement of lanthanides in the free radicals homeostasis. Curr Top Med Chem 14:2508–2519

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout F, Lürling M (2013) The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton. Hydrobiologia 710:265–277

    Article  CAS  Google Scholar 

  • Vásquez JA, Guerra N (1996) The use of seaweeds as bioindicators of natural and anthropogenic contaminants in northern Chile. Hydrobiologia 326:327–333

    Article  Google Scholar 

  • Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2010) Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, Turbinaria conoides. Ind Eng Chem Res 49:4405–4411

    Article  CAS  Google Scholar 

  • Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volokh AA, Gorbunov AV, Gundorina SF, Revich BA, Frontasyeva MV, Pal CS (1990) Phosphorus fertilizer production as a source of rare earth elements pollution of the environment. Sci Total Environ 95:141–148

    Article  CAS  PubMed  Google Scholar 

  • von Tucher S, Schmidhalter U (2005) Lanthanum uptake from soil and nutrient solution and its effects on plant growth. J Plant Nutr Soil Sci 168:574–580

    Article  CAS  Google Scholar 

  • Wang XR, Tu Q, Tian L, Dai L (1993) Simulation study on transport of rare earth elements along an aquatic food chain. Environ Chem 12:212–218. (in Chin.)

    Google Scholar 

  • Wang XR, Sun H, Xu Z, Dai L, Li Z, Chen YJ (1996) The effects and bioconcentration of REE La and its EDTA complex on the growth of algae (Chlorella vulgaris beijerinck). J Nanjing Univ (Nat Sci) 32:460–465. (in Chin.)

    CAS  Google Scholar 

  • Wang K, Cheng Y, Yang X, Li R (2003) Cell responses to lanthanides and potential pharmacological actions of lanthanides. In: Sigel A, Sigel H (eds) Metal ions in biological systems, vol 40, The lanthanides and their interrelations with biosystems. Marcel Dekker, New York/Basel, pp 707–751

    Google Scholar 

  • Wang C, Lu X, Tian Y, Cheng T, Hu L, Chen F, Jiang C, Wang X (2011) Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in Vicia faba L. seedlings. Biol Trace Elem Res 143:1174–1181

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Li J, Lü Y, Jin HB, Deng SH, Zeng YM (2012) Effects of cerium on growth and physiological characteristics of Anabaena flosaquae. J Rare Earths 30:1287–1292

    Article  CAS  Google Scholar 

  • Wang L, Li J, Zhou Q, Yang G, Ding XL, Li X, Cai CX, Zhang Z, Wei HY, Lu TH, Deng WW, Huang XH (2014) Rare earth elements activate endocytosis in plant cells. Proc Natl Acad Sci U S A 111:12936–12941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei YZ, Zhou XB (2000) Effect of neodymium on physiological activities in oilseed rape during calcium starvation. J Rare Earths 18:57–61

    Google Scholar 

  • Weinberger F, Leonardi P, Miravalles A, Correa JA, Lion U, Kloareg B, Potin P (2005) Dissection of two distinct defense-related responses to agar oligosaccharides in Gracilaria chilensis (Rhodophyta) and Gracilaria conferta (Rhodophyta). J Phycol 41:863–873

    Article  CAS  Google Scholar 

  • Xia S, Zhao P, Chen K, Li Y, Liu S, Zhang L, Yang H (2012) Feeding preferences of the sea cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture 344–349:205–209

    Article  Google Scholar 

  • Xin FY, Yuan YX, Qu KM (1998) Influence of lanthanum-amino acid complexes on Chaetoceros muller. Chin J Appl Ecol 9:206–208. (in Chin.)

    CAS  Google Scholar 

  • Yan XJ, Hou XL, Sun B, Fan X, Han LJ (1998) Element composition of Sargassum thunbergii. Chinese J Oceanol Limnol 16:189–192

    Article  CAS  Google Scholar 

  • Yang G, Kong Q (2002) Effect of La3+ and Nd3+ on growth, DHA yield and nitrogenase activity of Crypthecodinium cohnii. J Chin Rare Earth Soc 20(S1):168–171

    Google Scholar 

  • Yao JM, Gong ZB, Li YC, Wen YY, Li J, Wang T (2007) Determination of rare earth elements in marine organisms inductively coupled plasma-mass spectrometry with microwave digestion. J Instrum Anal 26:473–477. (in Chin.)

    Article  CAS  Google Scholar 

  • Yin S, Ze Y, Liu C, Li N, Zhou M, Duan Y, Hong FS (2009) Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Biol Trace Elem Res 132:247–258

    Article  CAS  PubMed  Google Scholar 

  • Yoder MD, Jurnak F (1995) The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 Angstrom resolution: implications for an enzymatic mechanism. Plant Physiol 107:349–364

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida K, Shimmen T (2009) Involvement of actin filaments in rhizoid morphogenesis of Spirogyra. Physiol Plant 135:98–107

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K (1998) Mechanosensitive channels in the cell body of Chlamydomonas. J Membr Biol 166:149–155

    Article  CAS  PubMed  Google Scholar 

  • Yuan XZ, Pan G, Chen H, Tian BH (2009) Phosphorus fixation in lake sediments using LaCl3-modified clays. Ecol Eng 35:1599–1602

    Google Scholar 

  • Zepf V (2013) Rare earth elements. A new approach to the nexus of supply, demand and use: exemplified along the use of neodymium in permanent magnets. Springer thesis, Springer, Berlin/Heidelberg, 157 pp

    Google Scholar 

  • Zhang SQ, Zhang AQ, Yan JC (2006) Study on the performance enhancing effect of rare earth elements on fattening pigs, broilers and laying hens. Rev China Agric Sci Technol 8:35–39

    Google Scholar 

  • Zhang N, Huang CH, Hu B (2007) ICP-AES determination of trace rare earth elements in environmental and food samples by on-line separation and preconcentration with acetylacetone-modified silica gel using microcolumn. Anal Chem 23:997–1002

    CAS  Google Scholar 

  • Zhou PJ, Lin J, Shen H, Li T, Song LR, Shen YW, Liu YD (2004) Kinetic studies on the combined effects of lanthanum and cerium on the growth of Microcystis aeruginosa and their accumulation by M. aeruginosa. Bull Environ Contam Toxicol 72:711–716

    CAS  PubMed  Google Scholar 

  • Zhu ZZ, Wang ZG, Li J, Li Y, Zhang ZG, Zhang P (2012) Distribution of rare earth elements in sewage-irrigated soil profiles in Tianjin, China. J Rare Earth 30:609–613

    Article  CAS  Google Scholar 

  • Zoll AM, Schijf J (2012) A surface complexation model of YREE sorption on Ulva lactuca in 0.05–5.0 M NaCl solutions. Geochim Cosmochim Acta 97:183–199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Brooker for critical reading and language corrections of the manuscript. This work was supported by the Academy of Sciences of the Czech Republic (grant numbers M200201205, and RVO 61388971) and by the National Programme of Sustainability I, ID: LO1416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milada Vítová .

Editor information

Editors and Affiliations

List of Abbreviations

List of Abbreviations

EC50 :

half maximal effective concentration

ICP-MS:

inductively coupled plasma mass spectrometry

Ln:

lanthanide series of elements

REE:

rare earth elements

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goecke, F., Zachleder, V., Vítová, M. (2015). Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_10

Download citation

Publish with us

Policies and ethics