Skip to main content

Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory.

By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification.

To the best of our knowledge, this is the first work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  2. http://www.freesurfer.net/

  3. Raven, J.C., et al.: Raven Manual: Section 4, Advanced Progressive Matrices. Oxford Psychologists Press Ltd., Oxford (1998)

    Google Scholar 

  4. Ankerst, M., Kastenmüller, G., Kriegel, H.-P., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 207–226. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bonnotte, N.: From Knothe’s rearrangement to Brenier’s optimal transport map, pp. 1–29 (2012). arXiv:1205.1099

  6. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Com. Pure Appl. Math. 64, 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  7. Chaplota, S., Patnaika, L., Jagannathanb, N.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control 1, 86–92 (2006)

    Article  Google Scholar 

  8. Gu, X., Wang, Y., Yau, S.-T.: Geometric compression using riemann surface structure. Commun. Inf. Syst. 3(3), 171–182 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Gu, X., Yau, S.-T.: Computational Conformal Geometry. International Press, Boston (2008)

    MATH  Google Scholar 

  10. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH 2001, vol. 21, pp. 203–212 (2001)

    Google Scholar 

  11. Hong, B.-W., Soatto, S.: Shape matching using multiscale integral invariants. IEEE TPAMI 37, 151–160 (2014)

    Article  Google Scholar 

  12. Im, K., Lee, J., Yoon, U., Shin, Y., Hong, S., Kim, I., Kwon, J., Kim, S.: Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth and folding area. Hum. Brain Mapp. 27, 994–1003 (2006)

    Article  Google Scholar 

  13. Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 804–817. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Yang, J.J., Yoon, U., Yun, H., Im, K., Choi, Y.Y., Kim, S.I., Lee, K.H., Lee, J.-M.: Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 246, 351–361 (2013)

    Article  Google Scholar 

  15. Kantorovich, L.V.: On a problem of monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  16. Kurtek, S., Klassen, E., Gore, J.C., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parameterized surfaces. TPAMI 34, 1717–1730 (2012)

    Article  Google Scholar 

  17. Laga, H., Takahashi, H., Nakajima, M.: Three-dimensional point cloud recognition via distributions of geometric distances. In: Shape Modeling and Applications, pp. 15–23 (2006)

    Google Scholar 

  18. Luders, E., Narr, K., Bilder, R., Szeszko, P., Gurbani, M., Hamilton, L., Toga, A., Gaser, C.: Mapping the relationship between cortical convolution and intelligence: effects of gender. Cereb. Cortex 18, 2019–2026 (2008)

    Article  Google Scholar 

  19. Luders, E., Narr, K., Bilder, R., Thompson, P., Szeszko, P., Hamilton, L., Toga, A.: Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37, 1457–1464 (2007)

    Article  Google Scholar 

  20. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. J. Graph. Models 71, 22–32 (2009)

    Article  Google Scholar 

  21. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. TVCG 14, 1030–1043 (2008)

    Google Scholar 

  22. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. In: Symposium on Large Spatial Databases, vol. 21, pp. 807–832 (2002)

    Google Scholar 

  23. Schmitzer, B., Schnörr, C.: Object segmentation by shape matching with wasserstein modes. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 123–136. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. TPAMI 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  25. Thompson, P.M., Hayashi, K.M., Doddrell, D.M., Toga, A.W.: Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci. 23, 994–1005 (2003)

    Google Scholar 

  26. Unnikrishnan, R., Hebert, M.: Multi-scale interest regions from unorganized point clouds. In: CVPR Workshop (2008)

    Google Scholar 

  27. Singh, V., Mukherjee, L., Chung, M.K.: Cortical surface thickness as a classifier. Med. Image Comput. Comput. Assist. Interv. 11, 999–1007 (2008)

    Google Scholar 

  28. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  29. Wang, W., Slepev, D., Basu, S., Ozolek, J.A., Rohde, G.K.: A linear optimal transportation framework for quantifying and visualizing variations in sets of images. IJCV 101(2), 254–269 (2013)

    Article  MATH  Google Scholar 

  30. Wang, X., Ying, X., Liub, Y.-J., Xin, S.-Q., Wang, W., Gu, X., Mueller-Wittig, W., He, Y.: Intrinsic computation of centroidal voronoi tessellation (CVT) on meshes. Comput. Aided Des. 58, 51–61 (2015)

    Article  Google Scholar 

  31. Winkler, A.M., Glahn, D.C.: Cortical thickness or grey matter volume? the importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3), 1135–1146 (2010)

    Article  Google Scholar 

  32. Winkler, A.M., Glahn, D.C.: Measuring and comparing brain cortical surface area and other areal quantities. Neuroimage 61(4), 1428–1443 (2012)

    Article  Google Scholar 

  33. Younes, L.: Spaces and manifolds of shapes in computer vision: an overview. Image Vis. Comput. 30(6–7), 389–397 (2012)

    Article  Google Scholar 

  34. Zacharaki, E.I., Wang, S., Chawla, S., Yoo, D.S., Wolf, R., Melhem, E.R., Davatzikosa, C.: Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme. Magn. Reson. Med. 62, 1609–1618 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyu Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Su, Z., Zeng, W., Wang, Y., Lu, ZL., Gu, X. (2015). Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics