Skip to main content

The Sensitivity Analysis of Two-Level Hierarchical Linear Models to Outliers

  • Conference paper
Quantitative Psychology Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 140))

Abstract

The hierarchical linear model (HLM) has become popular in behavioral research, and has been widely used in various educational studies in recent years. Violations of model assumptions can have significant impact on the model estimates. The purpose of this study is to conduct a sensitivity analysis of two-level HLM by exploring the influence of outliers on parameter estimates of HLM under normality assumptions. A simulation study is performed to examine the bias of parameter estimates with different numbers and magnitudes of outliers given different sample sizes. Results indicated that the bias of parameter estimates increased with the magnitudes and number of outliers. The estimates have bias with a few outliers. A robust method Huber sandwich estimator corrected the standard errors efficiently when there was a large proportion of outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitkin, M., Anderson, D., & Hinde, J. (1981). Statistical modeling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144(4), 419–461.

    Article  Google Scholar 

  • Barnett, V., & Lewis, T. (1994). Outliers in statistical data (Vol. 3). New York: Wiley.

    MATH  Google Scholar 

  • Bijleveld, C. C. J. H., van der Kamp, L. J. T., Mooijaart, A., van der Kloot, W. A., van der Leeden, R., & van der Burg, E. (1998). Longitudinal data analysis: Designs, models and methods. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Cronbach, L. J., & Webb, N. (1975). Between and within-class effects in a reported aptitude-by-treatment interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 6, 717–724.

    Google Scholar 

  • Diggle, P., Liang, K.-Y., & Zeger, S. (1994). Analysis of longitudinal data. Oxford: Clarendon.

    Google Scholar 

  • Field, A. P. (2009). Discovering statistics using spss (and sex and drugs and rock ‘n’ roll) (3rd ed.). Los Angeles/London: Sage.

    Google Scholar 

  • Frank, K. A. (1998). Quantitative methods for studying social context in multilevels and through interpersonal relations. Review of Research in Education, 23, 171–216.

    Google Scholar 

  • Freedman, D. A. (2006). On the so-called ‘Huber sandwich estimator’ and ‘robust standard errors’. The American Statistician, 60(4), 299. doi:10.2307/27643806.

    Article  MathSciNet  Google Scholar 

  • Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1). 1–21.

    Article  Google Scholar 

  • Hogg, R. (1979). Statistical robustness: One view of its use in applications today. American Statistician, 33, 108–115.

    MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Paper presented at the Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.

    Google Scholar 

  • King, G., & Roberts, M. (2012). How robust standard errors expose methodological problems they do not fix. Annual Meeting of the Society for Political Methodology, Duke University.

    Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006) ‘SAS®;’ System for Mixed Models (2nd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Morris, C. N. (1995). Hierarchical models for educational data: An overview. Journal of Educational and Behavioral Statistics, 20(2), 190–200.

    Article  Google Scholar 

  • Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: a second course in statistics. Addison-Wesley Series in Behavioral Science: Quantitative Methods.

    Google Scholar 

  • Rachman-Moore, D., & Wolfe, R. G. (1984). Robust analysis of a nonlinear model for multilevel educational survey data. Journal of Educational Statistics, 9(4), 277–293.

    Article  Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357.

    Article  Google Scholar 

  • SAS Institute Inc. (2013). SAS/STAT®;13.1 user’s guide. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley.

    Book  MATH  Google Scholar 

  • Seltzer, M. (1993). Sensitivity analysis for fixed effects in the hierarchical model: A Gibbs sampling approach. Journal of Educational Statistics, 18(3), 207–235.

    Article  Google Scholar 

  • Seltzer, M., & Choi, K. (2003). Sensitivity analysis for hierarchical models: Downweighting and identifying extreme cases using the t distribution. Multilevel modeling: Methodological advances, issues, and applications, 25–52.

    Google Scholar 

  • Seltzer, M., Novak, J., Choi, K., & Lim, N. (2002). Sensitivity analysis for hierarchical models employing “t” level-1 assumptions. Journal of Educational and Behavioral Statistics, 27(2), 181–222.

    Article  Google Scholar 

  • White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 48, 817–838.

    Article  MathSciNet  MATH  Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Review, 37(4), 531–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, C., Tseng, S.-T., & Wang, Z. (2014). Outlier detection in general profiles using penalized regression method. IIE Transactions, 46(2), 106–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, J., Lu, Z., Cohen, A.S. (2015). The Sensitivity Analysis of Two-Level Hierarchical Linear Models to Outliers. In: van der Ark, L., Bolt, D., Wang, WC., Douglas, J., Chow, SM. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-19977-1_22

Download citation

Publish with us

Policies and ethics