Skip to main content

On the Use of the Multiple Scale Harmonic Balance Method for Nonlinear Energy Sinks Controlled Systems

  • Conference paper
  • First Online:
Structural Nonlinear Dynamics and Diagnosis

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

  • 1078 Accesses

Abstract

The Multiple Scale Harmonic Balance Method (MSHBM) is discussed here for several paradigmatic systems (primary structures) equipped with a Nonlinear Energy Sink (NES). This is a small-mass oscillator with essentially nonlinear stiffness, used for passive control purpose. The method permits to overcome the difficulties inherent to standard perturbation methods, which occur as a consequence of the nonlinearizable nature of the NES equation. It combines the Multiple Scale Method and the Harmonic Balance Method to furnish Amplitude Modulation Equations ruling the slow asymptotic dynamics of the augmented system. The MSHBM is illustrated here for a general, internally non-resonant, multi d.o.f. structure equipped with a NES and under multiple concurrent actions, namely steady wind inducing Hopf bifurcation , and 1:1 and 1:3 resonant harmonic forces. The relevant Amplitude Modulation Equations are specialized for simpler cases, where the single contributions of each external action is considered separately. The effect of the NES on the dynamics of the system is discussed for each case and numerical results are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, New York (2008)

    Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer, New York (2008)

    Google Scholar 

  3. Maniadis, P., Kopidakis, G., Aubry, S.: Classical and quantum targeted energy transfer between nonlinear oscillators. Physica D 188, 153–177 (2004)

    Article  ADS  MATH  Google Scholar 

  4. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Panagopoulos, P.N., Gendelman, O., Vakakis, A.F.: Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn. 47, 377–387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Physica B: Phys. Conden. Matter 296, 222–236 (2001)

    Article  ADS  Google Scholar 

  7. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillatorscoupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guckenheimer, J., Wechselberger, M., Young, L.-S.: Chaotic attractors of relaxation oscillators. Nonlinearity 19, 701–720 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. Guckenheimer, J., Hoffman, K., Weckesser, W.: Bifurcations of relaxation oscillations near folded saddles. Int. J. Bifurcat. Chaos 15, 3411–3421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. Part I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    Article  MATH  Google Scholar 

  11. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746–765 (2008)

    Article  ADS  Google Scholar 

  12. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4), 763–780 (2011)

    Google Scholar 

  13. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks. Part II: theory and experiments. Nonlinear Dyn. 67(1), 37–46 (2012)

    Article  MATH  Google Scholar 

  14. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mechanica 221, 175–200 (2011)

    Article  Google Scholar 

  15. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow. SIAM J. Appl. Math. 70(5), 1655–1677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib. 330, 2580–2595 (2011)

    Google Scholar 

  17. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Article  ADS  Google Scholar 

  19. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  20. Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003)

    Article  MATH  Google Scholar 

  21. Malatkar, P., Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator. Nonlinear Dyn. 47, 167–179 (2007)

    Article  MATH  Google Scholar 

  22. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3), 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  23. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed Multiple Scale/Harmonic Balance Method. J. Vib. Control 20(13), (2014)

    Google Scholar 

  24. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica (2014). doi:10.1007/s11012-014-0057-0

    Google Scholar 

  25. Doedel, E.J., Oldeman, B.E.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equation (2012). http://cmvl.cs.concordia.ca/auto/

  26. Nayfeh, S.A., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a taut string to longitudinal and transverse end excitation. J. Vib. Control 1(3), 307–334 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was granted by the Italian Ministry of University and Research (MIUR), under the PRIN10-12 program, project No. 2010MBJK5B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Zulli .

Editor information

Editors and Affiliations

Appendix A: Coefficients of the Equations

Appendix A: Coefficients of the Equations

The index H indicates the Hermitian (transpose and complex conjugate). The expression of the coefficients of (19) are:

$$\begin{aligned} c_1&= 2i\omega \mathbf {v}^H\mathbf {M}\mathbf {u}+\mathbf {v}^H\mathbf {C}\mathbf {u},\quad c_2=-i\omega \mathbf {v}^H\mathbf {C}_1\mathbf {u}-\mathbf {v}^H\mathbf {K}_\mu \mathbf {u},\nonumber \\ c_3&= -\mathbf {v}^H\mathbf {K}_\sigma \mathbf {u},\quad c_4 = -i\omega \mathbf {v}^H\mathbf {r},\quad c_5=-3\mathbf {v}^H\mathbf {r},\nonumber \\ c_6&= -3\mathbf {v}^H\mathbf {n}(\mathbf {u},\mathbf {u},\bar{\mathbf {u}}),\quad c_7=-3\mathbf {v}^H\mathbf {n}(\mathbf {w}_0,\bar{\mathbf {u}},\bar{\mathbf {u}}),\nonumber \\ c_8&= -6\mathbf {v}^H\mathbf {n}(\mathbf {u},\mathbf {w}_0,\bar{\mathbf {w}}_0),\quad c_9=\frac{1}{2}\mathbf {v}^H\mathbf {f}_1 \end{aligned}$$
(62)

In (20) the column matrices \(\mathbf {w}_j\) (\(j=1,\ldots ,8\)) are the solutions of the following singular algebraic problems:

$$\begin{aligned} \mathbf {w}_1:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_1=-i\omega \Bigl (\mathbf {C}_1\mathbf {u}\nonumber \\&-\frac{1}{c_1}(\mathbf {v}^H\mathbf {C}_1\mathbf {u})(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\nonumber \\&-\Bigl (\mathbf {K}_\mu \mathbf {u}-\frac{1}{c_1}(\mathbf {v}^H\mathbf {K}_\mu \mathbf {u})(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(63)
$$\begin{aligned} \mathbf {w}_2:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_2=-\Bigl (\mathbf {K}_\sigma \mathbf {u}\nonumber \\&-\frac{1}{c_1}(\mathbf {v}^H\mathbf {K}_\sigma \mathbf {u})(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(64)
$$\begin{aligned} \mathbf {w}_3:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_3=-6\Bigl (\mathbf {n}(\mathbf {u},\mathbf {w}_0,\bar{\mathbf {w}}_0)\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {n}(\mathbf {u},\mathbf {w}_0,\bar{\mathbf {w}}_0)(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(65)
$$\begin{aligned} \mathbf {w}_4:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_4=-i\omega \Bigl (\mathbf {r}\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {r}(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(66)
$$\begin{aligned} \mathbf {w}_5:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_5=-3 \Bigl (\mathbf {r}\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {r}(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(67)
$$\begin{aligned} \mathbf {w}_6:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_6=-6\Bigl (\mathbf {n}(\mathbf {u},\mathbf {u},\bar{\mathbf {u}})\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {n}(\mathbf {u},\mathbf {u},\bar{\mathbf {u}})(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(68)
$$\begin{aligned} \mathbf {w}_7:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_7=-6\Bigl (\mathbf {n}(\mathbf {w}_0,\bar{\mathbf {u}},\bar{\mathbf {u}})\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {n}(\mathbf {w}_0,\bar{\mathbf {u}},\bar{\mathbf {u}})(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr )\end{aligned}$$
(69)
$$\begin{aligned} \mathbf {w}_8:\qquad (\mathbf {K}_0&+i\omega \mathbf {C}_0-\omega ^2\mathbf {M})\mathbf {w}_8=-\frac{1}{2} \Bigl (\mathbf {f}_1\nonumber \\&-\frac{1}{c_1}\mathbf {v}^H\mathbf {f}_1(2i\omega \mathbf {M}\mathbf {u}+\mathbf {C}_0\mathbf {u})\Bigr ) \end{aligned}$$
(70)

The solution is made unique by the normalization condition \(\mathbf {w}_j^T\mathbf {u}=0\).

Moreover \(\mathbf {w}_j\) (\(j=9,\ldots ,15\)) are the solutions of the following non-singular algebraic problems, in which, however, compatibility is satisfied.

$$\begin{aligned} \mathbf {w}_9:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_9=-3i\mathbf {C}_1\mathbf {w}_0-\mathbf {K}_\mu \mathbf {w}_0\end{aligned}$$
(71)
$$\begin{aligned} \mathbf {w}_{10}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{10}=-\mathbf {K}_\sigma \mathbf {w}_0\end{aligned}$$
(72)
$$\begin{aligned} \mathbf {w}_{11}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{11}=-3i\omega \mathbf {r}\end{aligned}$$
(73)
$$\begin{aligned} \mathbf {w}_{12}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{12}=-\mathbf {r}\end{aligned}$$
(74)
$$\begin{aligned} \mathbf {w}_{13}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{13}=-\mathbf {n}(\mathbf {u},\mathbf {u},\mathbf {u})\end{aligned}$$
(75)
$$\begin{aligned} \mathbf {w}_{14}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{14}=-6\mathbf {n}(\mathbf {w}_0,\mathbf {u},\bar{\mathbf {u}})\end{aligned}$$
(76)
$$\begin{aligned} \mathbf {w}_{15}:\qquad (\mathbf {K}_0&+3i\omega \mathbf {C}_0-9\omega ^2\mathbf {M})\mathbf {w}_{15}=-3\mathbf {n}(\mathbf {w}_0,\mathbf {w}_0,\bar{\mathbf {w}}_0) \end{aligned}$$
(77)

In (45)–(50), the expressions of the right hand side terms are:

$$\begin{aligned} \mathscr {F}_1&=-\zeta \omega a-\frac{3}{32\omega ^3}\eta _3\kappa _c a^2\sin (3\alpha )-\frac{1}{2}\xi b_1\cos (\alpha -\beta _1)\nonumber \\&+\frac{3}{8\omega }\kappa b_1^3\sin (\alpha -\beta _1)+\frac{3}{8\omega }\kappa b_1^2b_3\sin (\alpha +2\beta _1-\beta _3)\nonumber \\&+\frac{3}{4\omega }\kappa b_1b_3^2\sin (\alpha -\beta _1)\end{aligned}$$
(78)
$$\begin{aligned} \mathscr {F}_2&=\frac{3}{64\omega ^5}\eta _3^2\kappa _c a-\frac{\sigma \omega }{2}a-\frac{3}{32\omega ^3}\eta _3\kappa _c a^2\cos (3\alpha )+\frac{3}{8\omega }\kappa _c a^3\nonumber \\&+\frac{1}{2}\xi b_1\sin (\alpha -\beta _1)+\frac{3}{8\omega }\kappa b_1^3\cos (\alpha -\beta _1)\nonumber \\&+\frac{3}{8\omega }\kappa b_1^2b_3\cos (\alpha +2\beta _1-\beta _3)+\frac{3}{4\omega }\kappa b_1b_3^2\cos (\alpha -\beta _1)\end{aligned}$$
(79)
$$\begin{aligned} \mathscr {F}_3&=-\frac{1}{2}m\omega ^2 a\cos (\alpha -\beta _1)+\frac{1}{2}m\omega ^2 b_1\nonumber \\&-\frac{3}{8}\kappa b_1^2b_3\cos (3\beta _1-\beta _3)-\frac{3}{4}\kappa b_1b_3^2\end{aligned}$$
(80)
$$\begin{aligned} \mathscr {F}_4&=\frac{1}{2}m\omega ^2 a\sin (\alpha -\beta _1)+\frac{1}{2}\xi \omega b_1-\frac{3}{8}\kappa b_1^2b_3\sin (3\beta _1-\beta _3)\end{aligned}$$
(81)
$$\begin{aligned} \mathscr {F}_5&=\frac{9}{8}\eta _3 m\cos (\beta _3)-\frac{9}{64}\eta _3 m\sigma \cos (\beta _3)+\frac{27}{32}\eta _3m\zeta \sin (\beta _3)\nonumber \\&+\frac{27}{4096\omega ^6}\eta _3^3m\kappa _c\cos (\beta _3)+\frac{27}{128\omega ^2}\eta _3m\kappa _c a^2\cos (\beta _3)\nonumber \\&-\frac{9}{64}\kappa _c ma^3\cos (3\alpha -\beta _3)-\frac{1}{8}\kappa b_1^3\cos (3\beta _1-\beta _3)\nonumber \\&-\frac{9}{64}\kappa m b_1^3\cos (3\beta _1-\beta _3)+\frac{9}{2}m\omega ^2b_3\nonumber \\&-\frac{3}{4}\Bigl (1+\frac{9}{8}\mu _1\Bigr )\kappa b_1^2b_3-\frac{3}{8}\Bigl (1+\frac{9}{8}\mu _1\Bigr )\kappa b_3^3\end{aligned}$$
(82)
$$\begin{aligned} \mathscr {F}_6&=\frac{27}{32}\eta _3 m \zeta \cos (\beta _3)-\frac{9}{8}\Bigl (1-\frac{1}{8}\sigma \Bigr )\eta _3 m\sin (\beta _3)\nonumber \\&-\frac{27}{4096\omega ^6}\eta _3^3\kappa _c m\sin (\beta _3)-\frac{27}{128\omega ^2}\eta _3\kappa _c ma^2\sin (\beta _3)\nonumber \\&-\frac{9}{64}\kappa _c m a^3\sin (3\alpha -\beta _3)-\frac{1}{8}\Bigl (1+\frac{9}{8}m\Bigr )\kappa b_1^3\sin (3\beta _1-\beta _3)\nonumber \\&-\frac{3}{2}\Bigl (1+\frac{9}{8}m\Bigr )\xi \omega b_3 \end{aligned}$$
(83)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Luongo, A., Zulli, D. (2015). On the Use of the Multiple Scale Harmonic Balance Method for Nonlinear Energy Sinks Controlled Systems. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_12

Download citation

Publish with us

Policies and ethics