Skip to main content

Part of the book series: Methods in Statistical Ecology ((MISE))

  • 4271 Accesses

Abstract

Distance sampling provides a rigorous framework for estimating detectability, allowing us to correct counts of detected animals in covered areas for those that were missed. The fundamental concept involved in estimating detectability in the distance sampling context is the detection function, which represents the probability of detecting an object of interest as a function of its distance from the line or point. Thus a key step in any distance sampling analysis is to choose a plausible and parsimonious model for the detection function.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-19219-2_14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Borchers, D. L., J. L. Laake, C. Southwell, and C. G. M. Paxton (2006). Accommodating unmodeled heterogeneity in double-observer distance sampling surveys. Biometrics 62, 372–378.

    Article  MATH  MathSciNet  Google Scholar 

  • Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (2001). Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (2004). Advanced Distance Sampling. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Buckland, S. T., K. P. Burnham, and N. H. Augustin (1997). Model selection: an integral part of inference. Biometrics 53, 603–618.

    Article  MATH  Google Scholar 

  • Buckland, S. T., J. L. Laake, and D. L. Borchers (2010). Double-observer line transect methods: levels of independence. Biometrics 66, 169–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Burnham, K. P. and D. R. Anderson (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer-Verlag.

    Google Scholar 

  • Burnham, K. P., S. T. Buckland, J. L. Laake, D. L. Borchers, T. A. Marques, J. R. B. Bishop, and L. Thomas (2004). Further topics in distance sampling. pp. 307–392 in S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (Eds.), Advanced Distance Sampling. Oxford: Oxford University Press.

    Google Scholar 

  • Burt, L., D. L. Borchers, K. J. Jenkins, and T. A. Marques (2014). Using mark-recapture distance sampling methods on line transect surveys. Methods in Ecology and Evolution 5, 1180–1191.

    Article  Google Scholar 

  • Collier, B. A., S. L. Farrell, A. M. Long, A. J. Campomizzi, K. B. Hays, J. L. Laake, M. L. Morrison, and R. N. Wilkins (2013). Modeling spatially explicit densities of endangered avian species in a heterogeneous landscape. The Auk 130, 666–676.

    Article  Google Scholar 

  • Fancy, S. G., T. J. Snetsinger, and J. D. Jacobi (1997). Translocation of the palila, an endangered Hawaiian honeycreeper. Pacific Conservation Biology 3, 39–46.

    Article  Google Scholar 

  • Gates, C. E., W. H. Marshall, and D. P. Olson (1968). Line transect method of estimating grouse population densities. Biometrics 24, 135–145.

    Article  Google Scholar 

  • Hammond, P. S., P. Berggren, H. Benke, D. L. Borchers, A. Collet, M. P. Heide-Jørgensen, S. Heimlich, A. R. Hiby, M. F. Leopold, and N. Øien (2002). Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. The Journal of Applied Ecology 39, 361–376.

    Article  Google Scholar 

  • Hayes, R. J. and S. T. Buckland (1983). Radial-distance models for the line-transect method. Biometrics 39, 29–42.

    Article  MATH  Google Scholar 

  • Laake, J. L. (1999). Distance sampling with independent observers: reducing bias from heterogeneity by weakening the conditional independence assumption. pp. 137–148 in G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (Eds.), Marine Mammal Survey and Assessment Methods. Rotterdam: Balkema.

    Google Scholar 

  • Laake, J. L. and D. L. Borchers (2004). Methods for incomplete detection at distance zero. pp. 108–189 in S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (Eds.), Advanced Distance Sampling. Oxford: Oxford University Press.

    Google Scholar 

  • Laake, J. L., B. A. Collier, M. L. Morrison, and R. N. Wilkins (2011). Point-based mark-recapture distance sampling. Journal of Agricultural, Biological, and Environmental Statistics 16, 389–408.

    Article  MATH  MathSciNet  Google Scholar 

  • Link, W. A. (2003). Nonidentifiability of population size from capture-recapture data with heterogeneous detection probabilities. Biometrics 59, 1123–1130.

    Article  MATH  MathSciNet  Google Scholar 

  • Link, W. A. (2004). Individual heterogeneity and identifiability in capture-recapture models. Animal Biodiversity and Conservation 27, 87–91.

    Google Scholar 

  • Marques, F. F. C. and S. T. Buckland (2003). Incorporating covariates into standard line transect analyses. Biometrics 59, 924–935.

    Article  MATH  MathSciNet  Google Scholar 

  • Marques, F. F. C. and S. T. Buckland (2004). Covariate models for the detection function. pp. 31–47 in S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas (Eds.), Advanced Distance Sampling. Oxford: Oxford University Press.

    Google Scholar 

  • Marques, T. A., L. Thomas, S. G. Fancy, and S. T. Buckland (2007). Improving estimates of bird density using multiple covariate distance sampling. The Auk 124, 1229–1243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buckland, S.T., Rexstad, E.A., Marques, T.A., Oedekoven, C.S. (2015). Modelling Detection Functions. In: Distance Sampling: Methods and Applications. Methods in Statistical Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-19219-2_5

Download citation

Publish with us

Policies and ethics