Skip to main content

Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

Aquaphotomics is a new discipline that provides a framework for understanding changes in water molecular system presented as a water spectral pattern, to mirror the rest of the solution and to give a holistic description related to system functionality. One of its main purposes is to identify water bands as main coordinates of future absorbance patterns to be used as a system biomarker. This chapter presents the Aquaphotomics methodology and illustrates a way to identify specific water bands using temperature change and addition of solutions of different ionic strength as perturbations. Rapid and precise measurement of low concentration solutes has been given as a strong evidence of the vast information that “the water spectral pattern as molecular mirror” approach provides. Few applications using near infrared spectroscopy and multivariate analysis as main tools of Aquaphotomics have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdollahi H, Tauler R (2011) Uniqueness and rotation ambiguities in Multivariate Curve Resolution methods. Chemom Intell Lab Syst 108:100–111. doi:10.1016/j.chemolab.2011.05.009

    Article  CAS  Google Scholar 

  • Afseth NK, Kohler A (2012) Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom Intell Lab Syst 117:92–99. doi:10.1016/j.chemolab.2012.03.004

    Article  CAS  Google Scholar 

  • Czarnik-Matusewicz B, Pilorz S (2006) Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis. Vib Spectrosc 40:235–245. doi:10.1016/j.vibspec.2005.10.002

    Article  CAS  Google Scholar 

  • Franks F (1973) Water: a comprehensive treatise. Plenum Press, New York, pp 276–279

    Google Scholar 

  • Frost VJ, Molt K (1997) Analysis of aqueous solutions by near-infrared spectrometry (NIRS) III. Binary mixtures of inorganic salts in water. J Mol Struct 410-411:573–579. doi:10.1016/S0022-2860(96)09707-4

    CAS  Google Scholar 

  • Gowen AA, Amigo JM, Tsenkova R (2013) Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal Chim Acta 759:8–20. doi:10.1016/j.aca.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  • Gowen AA, Marini F, Tsuchisaka Y, De Luca S, Bevilacqua M, O’Donnell C, Downey G, Tsenkova R (2015) On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems. Talanta 131:609–618. doi:10.1016/j.talanta.2014.08.049

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Kojima K, Taniguchi Y, Suzuki K (1984) Near-infrared spectra of water and aqueous electrolyte solutions at high pressures. J Solut Chem 13:811–823

    Article  CAS  Google Scholar 

  • Jaumot J, Gargallo R, de Juan A, Tauler R (2005) A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemom Intell Lab Syst 76:101–110. doi:10.1016/j.chemolab.2004.12.007

    Article  CAS  Google Scholar 

  • Jinendra BM (2010) Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of soybean. Ph.D thesis, Kobe University

    Google Scholar 

  • Jinendra B, Tamaki K, Kuroki S, Vassileva M, Yoshida S, Tsenkova R (2010) Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of virus infected soybean. Biochem Biophys Res Commun 397:685–690. doi:10.1016/j.bbrc.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita K, Miyazaki M, Morita H, Vassileva M, Tang C, Li D, Ishikawa O, Kusunoki H, Tsenkova R (2012) Spectral pattern of urinary water as a biomarker of estrus in the giant panda. Sci Rep 2:856. doi:10.1038/srep00856

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin J, Brown CW (1993) Near-IR spectroscopic measurement of seawater salinity. Environ Sci Technol 27:1611–1615. doi:10.1021/es00045a017

    Article  CAS  Google Scholar 

  • Maeda H, Ozaki Y, Tanaka M, Hayashi N, Kojima T (1995) Near infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water: relationship between spectral changes and hydrogen bonds. J Near Infrared Spectrosc 3:191–201. doi:10.1255/jnirs.69

    Article  CAS  Google Scholar 

  • Matija LR, Tsenkova RN, Miyazaki M, Banba K, Muncan JS (2012) Aquagrams: water spectral pattern as characterization of hydrogenated nanomaterial. FME Trans 40:51–56

    Google Scholar 

  • McNaught AD, Wilkinson A (1997) Terminology, compendium of chemical (the “Gold Book”), 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Molt K, Niemöller A, Cho YJ (1997) Analysis of aqueous solutions by near-infrared spectrometry (NIRS) II. Titrations of weak and very weak acids with strong bases. J Mol Struct 410–411:565–572. doi:10.1016/S0022-2860(96)09706-2

    Google Scholar 

  • Murayama K, Czarnik-Matusewicz B, Wu Y, Tsenkova R, Ozaki Y (2000) Comparison between conventional spectral analysis methods, chemometrics, and two-dimensional correlation spectroscopy in the analysis of near-infrared spectra of protein. Appl Spectrosc 54:978–985. doi:10.1366/0003702001950715

    Article  CAS  Google Scholar 

  • Nakakimura Y, Vassileva M, Stoyanchev T, Nakai K, Osawa R, Kawano J, Tsenkova R (2012) Extracellular metabolites play a dominant role in near-infrared spectroscopic quantification of bacteria at food-safety level concentrations. Anal Methods 4:1389. doi:10.1039/c2ay05771a

    Article  CAS  Google Scholar 

  • Putra A, Santo R, Kuroki S, Tsenkova R (2010) Robust spectral model for low metal concentration measurement in aqueous solution reveals the importance of water absorbance bands. In: Proceedings of the 14th international conference on near infrared spectroscopy, Bangkok, Thailand, pp 831–835

    Google Scholar 

  • Raichlin Y, Katzir A (2008) Fiber-optic evanescent wave spectroscopy in the middle infrared. Appl Spectrosc 62:55A–72A

    Article  CAS  PubMed  Google Scholar 

  • Robertson WWH, Diken EEG, Price EAE, Shin J-W, Johnson MA (2003) Spectroscopic determination of the OH- solvation shell in the OH-. (H2O)n clusters. Science 299:1367–1372. doi:10.1126/science.1080695

    Article  CAS  PubMed  Google Scholar 

  • Seasholtz M, Kowalski B (1990) Qualitative information from multivariate calibration models. Appl Spectrosc 44:1337–1348

    Article  CAS  Google Scholar 

  • Segelstein D (1981) The complex refractive index of water. M.S. thesis, p 167

    Google Scholar 

  • Segtnan VH, Šašić Š, Isaksson T, Ozaki Y (2001) Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal Chem 73:3153–3161. doi:10.1021/ac010102n

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Cappa CD, Wilson KR, Geissler PL, Cohen RC, Saykally RJ (2005) Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc Natl Acad Sci 102:14171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsenkova R (2009) Introduction aquaphotomics: dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J Near Infrared Spectrosc 17:303–314. doi:10.1255/jnirs.869

    Article  CAS  Google Scholar 

  • Tsenkova R (2010) Aquaphotomics: water in the biological and aqueous world scrutinised with invisible light. Spectrosc Eur 22:6–10

    Google Scholar 

  • Tsenkova R, Atanassova S, Toyoda K (2001) Near infrared spectroscopy for diagnosis: influence of mammary gland inflammation on cow’s milk composition measurement. Near Infrared Anal 2:59–66

    Google Scholar 

  • Tsenkova RN, Iordanova IK, Toyoda K, Brown DR (2004) Prion protein fate governed by metal binding. Biochem Biophys Res Commun 325:1005–1012. doi:10.1016/j.bbrc.2004.10.135

    Article  CAS  PubMed  Google Scholar 

  • Tsenkova R, Iso E, Parker M, Fockenberg C, Okubo M (2007a) Aqua-photomics: a NIRS investigation into the perturbation of water spectrum in an aqueous suspension of mesoscopic scale polystyrene spheres. In: 13th international conference on near infrared spectroscopy. Umea-Vasa, Sweden & Finland, pp A–04: 72

    Google Scholar 

  • Tsenkova R, Fockenberg C, Koseva N, Sakudo A, Parker M (2007b) Aqua-photomics: water absorbance patterns in NIR range used for detection of metal ions reveal the importance of sample preparation. In: 13th international conference on near infrared spectroscopy. Umea-Vasa, Sweden & Finland, 03–02: 73

    Google Scholar 

  • Weber JMJ, Kelley J, Nielsen S, Ayotte P, Johnson M (2000) Isolating the spectroscopic signature of a hydration shell with the use of clusters: superoxide tetrahydrate. Science 287:2461–2463. doi:10.1126/science.287.5462.2461

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roumiana Tsenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsenkova, R., Kovacs, Z., Kubota, Y. (2015). Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_8

Download citation

Publish with us

Policies and ethics